不同细粒含量沙土的实测吸力对压实曲线影响的经验方程

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-08-08 DOI:10.3390/geotechnics3030042
B. Chowdepalli, Kenji Watanabe
{"title":"不同细粒含量沙土的实测吸力对压实曲线影响的经验方程","authors":"B. Chowdepalli, Kenji Watanabe","doi":"10.3390/geotechnics3030042","DOIUrl":null,"url":null,"abstract":"To effectively apply various soil types for embankments, understanding their compaction characteristics is crucial. One crucial factor affecting compaction is suction, which plays a significant role as it is typically performed under unsaturated conditions. Suction varies with soil density, water content, and fines content. This study directly measures suction after soil compaction using the triaxial apparatus, unlike the Soil water characteristic curve (SWCC), assessing its impact on compaction characteristics. Immediate suction measurement after compaction provides apparent suction, resembling on-site conditions with open pore air pressure. Comparing SWCC with apparent suction at each compacted state reveals that suction and air entry value increase with initial density, positively impacting compaction. Notably, apparent suction aligns better with wetting process suction from the SWCC due to added water during specimen preparation. Empirical equations are derived to obtain suction contours across various density and saturation ranges, aiding in understanding suction variations on the compaction curve. Even slight variations in saturation causes noticeable changes in apparent suction during higher compaction efforts, affecting soil compaction characteristics. Therefore, the precise control of saturation control is needed to achieve desired properties of compacted soil, especially at higher compaction efforts and with various soil types. This understanding significantly impacts the mechanical behavior of unsaturated soils.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"64 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Equations Expressing the Effects of Measured Suction on the Compaction Curve for Sandy Soils Varying Fines Content\",\"authors\":\"B. Chowdepalli, Kenji Watanabe\",\"doi\":\"10.3390/geotechnics3030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To effectively apply various soil types for embankments, understanding their compaction characteristics is crucial. One crucial factor affecting compaction is suction, which plays a significant role as it is typically performed under unsaturated conditions. Suction varies with soil density, water content, and fines content. This study directly measures suction after soil compaction using the triaxial apparatus, unlike the Soil water characteristic curve (SWCC), assessing its impact on compaction characteristics. Immediate suction measurement after compaction provides apparent suction, resembling on-site conditions with open pore air pressure. Comparing SWCC with apparent suction at each compacted state reveals that suction and air entry value increase with initial density, positively impacting compaction. Notably, apparent suction aligns better with wetting process suction from the SWCC due to added water during specimen preparation. Empirical equations are derived to obtain suction contours across various density and saturation ranges, aiding in understanding suction variations on the compaction curve. Even slight variations in saturation causes noticeable changes in apparent suction during higher compaction efforts, affecting soil compaction characteristics. Therefore, the precise control of saturation control is needed to achieve desired properties of compacted soil, especially at higher compaction efforts and with various soil types. This understanding significantly impacts the mechanical behavior of unsaturated soils.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3030042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地应用各种土壤类型的路堤,了解它们的压实特性是至关重要的。影响压实的一个关键因素是吸力,它起着重要的作用,因为它通常在非饱和条件下进行。吸力随土壤密度、含水量和细粒含量而变化。与土壤水分特征曲线(SWCC)不同,本研究使用三轴仪直接测量土壤压实后的吸力,评估其对压实特性的影响。压实后立即测量吸力,提供表观吸力,类似于现场条件下的开孔空气压力。将SWCC与各压实状态下的视吸力进行比较,发现吸力和进气值随初始密度的增大而增大,对压实有正向影响。值得注意的是,由于在试样制备过程中添加了水,表观吸力与SWCC的润湿过程吸力更好地对齐。导出经验方程以获得不同密度和饱和度范围内的吸力轮廓,有助于理解压实曲线上的吸力变化。在高强度的压实过程中,即使饱和度的微小变化也会引起明显的表观吸力变化,从而影响土壤的压实特性。因此,需要精确控制饱和控制,以获得理想的压实土性能,特别是在高压实力和各种土壤类型下。这种认识显著影响非饱和土的力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Empirical Equations Expressing the Effects of Measured Suction on the Compaction Curve for Sandy Soils Varying Fines Content
To effectively apply various soil types for embankments, understanding their compaction characteristics is crucial. One crucial factor affecting compaction is suction, which plays a significant role as it is typically performed under unsaturated conditions. Suction varies with soil density, water content, and fines content. This study directly measures suction after soil compaction using the triaxial apparatus, unlike the Soil water characteristic curve (SWCC), assessing its impact on compaction characteristics. Immediate suction measurement after compaction provides apparent suction, resembling on-site conditions with open pore air pressure. Comparing SWCC with apparent suction at each compacted state reveals that suction and air entry value increase with initial density, positively impacting compaction. Notably, apparent suction aligns better with wetting process suction from the SWCC due to added water during specimen preparation. Empirical equations are derived to obtain suction contours across various density and saturation ranges, aiding in understanding suction variations on the compaction curve. Even slight variations in saturation causes noticeable changes in apparent suction during higher compaction efforts, affecting soil compaction characteristics. Therefore, the precise control of saturation control is needed to achieve desired properties of compacted soil, especially at higher compaction efforts and with various soil types. This understanding significantly impacts the mechanical behavior of unsaturated soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1