B. Balasuriya, H.W.P. Bhanuka, Hkt Sampath, A. Kulasekera, N. Jayaweera
{"title":"一种用于固定复杂形状零件的改进夹具解决方案","authors":"B. Balasuriya, H.W.P. Bhanuka, Hkt Sampath, A. Kulasekera, N. Jayaweera","doi":"10.1109/MERCON.2018.8421912","DOIUrl":null,"url":null,"abstract":"Manufacturing industry faces several challenges when manufacturing complex shaped components. One such challenge is holding complex shaped components. For such instances, various dedicated fixturing methods are used, reducing the flexibility and increasing the initial cost in manufacturing. Pin type fixturing methods are the dominating method of fixturing for complex shaped components. But the point loading from pin type fixturing methods can lead to surface damage reducing the quality of the product. So various methods have been introduced to reduce the negative effects from point loading. Granular jamming is one such method that has been of recent interest. The fixturing force granular jamming materials can provide depends on various factors including membrane properties. This research paper describes how the fixturing force provided by granular jammed pin type method vary on the thickness of the granular jamming membrane and how negative pressure variation affect the fixturing force from granular jamming. The membrane in this study is made out of latex using simple dipping techniques. According to the results of experiments carried out, fixturing force increases with increase of thickness in jamming membrane and when negative pressure is increased. Further, a novel configuration to increase fixturing force with a tubular membrane mounted on two pins was experimented. Experiments revealed that higher fixturing force can be obtained through such a novel configuration.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"12 1","pages":"555-559"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Fixturing Solution for Holding Complex Shaped Components\",\"authors\":\"B. Balasuriya, H.W.P. Bhanuka, Hkt Sampath, A. Kulasekera, N. Jayaweera\",\"doi\":\"10.1109/MERCON.2018.8421912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing industry faces several challenges when manufacturing complex shaped components. One such challenge is holding complex shaped components. For such instances, various dedicated fixturing methods are used, reducing the flexibility and increasing the initial cost in manufacturing. Pin type fixturing methods are the dominating method of fixturing for complex shaped components. But the point loading from pin type fixturing methods can lead to surface damage reducing the quality of the product. So various methods have been introduced to reduce the negative effects from point loading. Granular jamming is one such method that has been of recent interest. The fixturing force granular jamming materials can provide depends on various factors including membrane properties. This research paper describes how the fixturing force provided by granular jammed pin type method vary on the thickness of the granular jamming membrane and how negative pressure variation affect the fixturing force from granular jamming. The membrane in this study is made out of latex using simple dipping techniques. According to the results of experiments carried out, fixturing force increases with increase of thickness in jamming membrane and when negative pressure is increased. Further, a novel configuration to increase fixturing force with a tubular membrane mounted on two pins was experimented. Experiments revealed that higher fixturing force can be obtained through such a novel configuration.\",\"PeriodicalId\":6603,\"journal\":{\"name\":\"2018 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"12 1\",\"pages\":\"555-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCON.2018.8421912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Fixturing Solution for Holding Complex Shaped Components
Manufacturing industry faces several challenges when manufacturing complex shaped components. One such challenge is holding complex shaped components. For such instances, various dedicated fixturing methods are used, reducing the flexibility and increasing the initial cost in manufacturing. Pin type fixturing methods are the dominating method of fixturing for complex shaped components. But the point loading from pin type fixturing methods can lead to surface damage reducing the quality of the product. So various methods have been introduced to reduce the negative effects from point loading. Granular jamming is one such method that has been of recent interest. The fixturing force granular jamming materials can provide depends on various factors including membrane properties. This research paper describes how the fixturing force provided by granular jammed pin type method vary on the thickness of the granular jamming membrane and how negative pressure variation affect the fixturing force from granular jamming. The membrane in this study is made out of latex using simple dipping techniques. According to the results of experiments carried out, fixturing force increases with increase of thickness in jamming membrane and when negative pressure is increased. Further, a novel configuration to increase fixturing force with a tubular membrane mounted on two pins was experimented. Experiments revealed that higher fixturing force can be obtained through such a novel configuration.