使用自相似仿射不变描述子的形状匹配

Joonsoo Kim, He Li, Jiaju Yue, E. Delp
{"title":"使用自相似仿射不变描述子的形状匹配","authors":"Joonsoo Kim, He Li, Jiaju Yue, E. Delp","doi":"10.1109/ICIP.2016.7532803","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a shape descriptor known as Self Similar Affine Invariant (SSAI) descriptor for shape retrieval. The SSAI descriptor is based on the property that two sets of points are transformed by an affine transform, then subsets of each set of points are also related by the same affine transformation. Also, the SSAI descriptor is insensitive to local shape distortions. We use multiple SSAI descriptors based on different sets of neighbor points to improve shape recognition accuracy. We also describe an efficient image matching method for the multiple SSAI descriptors. Experimental results show that our approach achieves very good performance on two publicly available shape datasets.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"46 1","pages":"2470-2474"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shape matching using a self similar affine invariant descriptor\",\"authors\":\"Joonsoo Kim, He Li, Jiaju Yue, E. Delp\",\"doi\":\"10.1109/ICIP.2016.7532803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a shape descriptor known as Self Similar Affine Invariant (SSAI) descriptor for shape retrieval. The SSAI descriptor is based on the property that two sets of points are transformed by an affine transform, then subsets of each set of points are also related by the same affine transformation. Also, the SSAI descriptor is insensitive to local shape distortions. We use multiple SSAI descriptors based on different sets of neighbor points to improve shape recognition accuracy. We also describe an efficient image matching method for the multiple SSAI descriptors. Experimental results show that our approach achieves very good performance on two publicly available shape datasets.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"46 1\",\"pages\":\"2470-2474\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文引入了一种用于形状检索的自相似仿射不变量(SSAI)形状描述符。SSAI描述符基于这样的性质:两个点的集合通过一个仿射变换进行变换,那么每个点的子集也通过同一个仿射变换进行关联。此外,SSAI描述符对局部形状畸变不敏感。我们使用基于不同相邻点集的多个SSAI描述符来提高形状识别的精度。我们还描述了一种针对多个SSAI描述符的高效图像匹配方法。实验结果表明,我们的方法在两个公开的形状数据集上取得了很好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape matching using a self similar affine invariant descriptor
In this paper we introduce a shape descriptor known as Self Similar Affine Invariant (SSAI) descriptor for shape retrieval. The SSAI descriptor is based on the property that two sets of points are transformed by an affine transform, then subsets of each set of points are also related by the same affine transformation. Also, the SSAI descriptor is insensitive to local shape distortions. We use multiple SSAI descriptors based on different sets of neighbor points to improve shape recognition accuracy. We also describe an efficient image matching method for the multiple SSAI descriptors. Experimental results show that our approach achieves very good performance on two publicly available shape datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1