{"title":"胚胎-胎儿发育毒性研究中致畸严重程度的数值估计。","authors":"L. Wise","doi":"10.1002/bdrb.21171","DOIUrl":null,"url":null,"abstract":"A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo-fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two- to <fivefold higher than control have detectable but a low level of teratogenic severity, and scores ≥ fivefold higher than control have increasingly more severe teratogenicity. Such scores may help refine the concept of an exposure-based validation list for use by proponents of screening assays (Daston et al., 2014) by estimating the severity of \"positive\" exposures, or in other situations by defining the severity of a LOAEL (lowest observed adverse effect level).","PeriodicalId":9120,"journal":{"name":"Birth defects research. Part B, Developmental and reproductive toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Numeric Estimates of Teratogenic Severity from Embryo-Fetal Developmental Toxicity Studies.\",\"authors\":\"L. Wise\",\"doi\":\"10.1002/bdrb.21171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo-fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two- to <fivefold higher than control have detectable but a low level of teratogenic severity, and scores ≥ fivefold higher than control have increasingly more severe teratogenicity. Such scores may help refine the concept of an exposure-based validation list for use by proponents of screening assays (Daston et al., 2014) by estimating the severity of \\\"positive\\\" exposures, or in other situations by defining the severity of a LOAEL (lowest observed adverse effect level).\",\"PeriodicalId\":9120,\"journal\":{\"name\":\"Birth defects research. Part B, Developmental and reproductive toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth defects research. Part B, Developmental and reproductive toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/bdrb.21171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth defects research. Part B, Developmental and reproductive toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/bdrb.21171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Environmental Science","Score":null,"Total":0}
Numeric Estimates of Teratogenic Severity from Embryo-Fetal Developmental Toxicity Studies.
A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo-fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two- to
期刊介绍:
The purpose of this journal is to publish original contributions describing the toxicity of chemicals to developing organisms and the process of reproduction. The scope of the journal will inlcude: • toxicity of new chemical entities and biotechnology derived products to developing organismal systems; • toxicity of these and other xenobiotic agents to reproductive function; • multi-generation studies; • endocrine-mediated toxicity, particularly for endpoints that are relevant to development and reproduction; • novel protocols for evaluating developmental and reproductive toxicity; Part B: Developmental and Reproductive Toxicology , formerly published as Teratogenesis, Carcinogenesis and Mutagenesis