空间协调复制和表达噪声最小化限制了酵母基因组的三维组织

Arashdeep Singh, Meenakshi Bagadia, K. Sandhu
{"title":"空间协调复制和表达噪声最小化限制了酵母基因组的三维组织","authors":"Arashdeep Singh, Meenakshi Bagadia, K. Sandhu","doi":"10.1093/dnares/dsw005","DOIUrl":null,"url":null,"abstract":"Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii) cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii) cis interactions are also constrained by the essentiality and co-fitness of interacting genes. Essential gene clusters associate with high average interaction frequency, relatively short-range interactions of low variance, and exhibit less fluctuations in chromatin conformation, marking a physically restrained state of engaged loci that, we suggest, is important to mitigate the epigenetic errors by restricting the spatial mobility of loci. Indeed, the genes with lower expression noise associate with relatively short-range interactions of lower variance and exhibit relatively higher average interaction frequency, a property that is conserved across Escherichia coli, yeast, and mESCs. Altogether, our observations highlight the coordination of replication and the minimization of expression noise, not necessarily co-expression of genes, as potent evolutionary constraints shaping the spatial organization of yeast genome.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"13 1","pages":"155 - 169"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spatially coordinated replication and minimization of expression noise constrain three-dimensional organization of yeast genome\",\"authors\":\"Arashdeep Singh, Meenakshi Bagadia, K. Sandhu\",\"doi\":\"10.1093/dnares/dsw005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii) cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii) cis interactions are also constrained by the essentiality and co-fitness of interacting genes. Essential gene clusters associate with high average interaction frequency, relatively short-range interactions of low variance, and exhibit less fluctuations in chromatin conformation, marking a physically restrained state of engaged loci that, we suggest, is important to mitigate the epigenetic errors by restricting the spatial mobility of loci. Indeed, the genes with lower expression noise associate with relatively short-range interactions of lower variance and exhibit relatively higher average interaction frequency, a property that is conserved across Escherichia coli, yeast, and mESCs. Altogether, our observations highlight the coordination of replication and the minimization of expression noise, not necessarily co-expression of genes, as potent evolutionary constraints shaping the spatial organization of yeast genome.\",\"PeriodicalId\":11212,\"journal\":{\"name\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"volume\":\"13 1\",\"pages\":\"155 - 169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsw005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/dnares/dsw005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

尽管最近取得了进展,但形成真核生物基因组三维组织的潜在功能限制并不完全清楚。通过对全基因组数据集的综合多变量分析,我们发现酵母基因组中的顺式和反式相互作用具有显著不同的功能关联。特别地,(i)反式相互作用受到早期起源相互作用的协调复制和早期复制域的共变突变率的限制,而顺式相互作用受到晚期起源相互作用的晚期复制协调的限制;(ii)顺式和反式相互作用表现出对核小体占用的不同偏好;(iii)顺式相互作用还受到相互作用基因的必要性和共适合度的限制。必需基因簇具有较高的平均相互作用频率,相对较短范围的低方差相互作用,并且在染色质构象中表现出较少的波动,这标志着参与基因座的物理限制状态,我们认为,通过限制基因座的空间流动性来减轻表观遗传错误是重要的。事实上,具有较低表达噪声的基因与较低方差的相对短距离相互作用相关,并且表现出相对较高的平均相互作用频率,这一特性在大肠杆菌、酵母和mESCs中都是保守的。总之,我们的观察结果强调了复制的协调和表达噪声的最小化,而不一定是基因的共表达,作为塑造酵母基因组空间组织的强有力的进化约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially coordinated replication and minimization of expression noise constrain three-dimensional organization of yeast genome
Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii) cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii) cis interactions are also constrained by the essentiality and co-fitness of interacting genes. Essential gene clusters associate with high average interaction frequency, relatively short-range interactions of low variance, and exhibit less fluctuations in chromatin conformation, marking a physically restrained state of engaged loci that, we suggest, is important to mitigate the epigenetic errors by restricting the spatial mobility of loci. Indeed, the genes with lower expression noise associate with relatively short-range interactions of lower variance and exhibit relatively higher average interaction frequency, a property that is conserved across Escherichia coli, yeast, and mESCs. Altogether, our observations highlight the coordination of replication and the minimization of expression noise, not necessarily co-expression of genes, as potent evolutionary constraints shaping the spatial organization of yeast genome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telomere-to-telomere genome assembly of Oldenlandia diffusa Genome and transcriptome analyses reveal genes involved in the formation of fine ridges on petal epidermal cells in Hibiscus trionum Chromosome-level genome assembly of Lilford’s wall lizard, Podarcis lilfordi (Günther, 1874) from the Balearic Islands (Spain) Mituru Takanami, 1929–2022 A highly contiguous genome assembly of red perilla (Perilla frutescens) domesticated in Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1