S. Woo, Kim Yoon-Jung, Bangrong Cai, S. Park, Young Ho Kim, Ok-Joon Kim, I. Kang, Won-Jae Kim, Ji-Yeon Jung
{"title":"绿茶多酚(-)-表没食子儿茶素-3-没食子酸酯防止紫外线诱导的PC12细胞凋亡","authors":"S. Woo, Kim Yoon-Jung, Bangrong Cai, S. Park, Young Ho Kim, Ok-Joon Kim, I. Kang, Won-Jae Kim, Ji-Yeon Jung","doi":"10.11620/IJOB.2020.45.4.179","DOIUrl":null,"url":null,"abstract":"Green tea polyphenol (–)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiationinduced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiationinduced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.","PeriodicalId":14180,"journal":{"name":"International Journal of Oral Biology","volume":"67 1","pages":"179-189"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green tea polyphenol (–)-epigallocatechin-3-gallate prevents ultraviolet-induced apoptosis in PC12 cells\",\"authors\":\"S. Woo, Kim Yoon-Jung, Bangrong Cai, S. Park, Young Ho Kim, Ok-Joon Kim, I. Kang, Won-Jae Kim, Ji-Yeon Jung\",\"doi\":\"10.11620/IJOB.2020.45.4.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green tea polyphenol (–)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiationinduced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiationinduced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.\",\"PeriodicalId\":14180,\"journal\":{\"name\":\"International Journal of Oral Biology\",\"volume\":\"67 1\",\"pages\":\"179-189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Oral Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11620/IJOB.2020.45.4.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11620/IJOB.2020.45.4.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green tea polyphenol (–)-epigallocatechin-3-gallate prevents ultraviolet-induced apoptosis in PC12 cells
Green tea polyphenol (–)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiationinduced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiationinduced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.