M. Zeaiter, É. Latrille, P. Gras, J. Steyer, V. Bellon-Maurel, J. Roger
{"title":"改进中红外光谱模型对化学干扰的鲁棒性:应用于厌氧消化过程的监测","authors":"M. Zeaiter, É. Latrille, P. Gras, J. Steyer, V. Bellon-Maurel, J. Roger","doi":"10.3390/appliedchem2020008","DOIUrl":null,"url":null,"abstract":"The monitoring and control of bioprocesses rely on the measurement of the main metabolite concentrations. To this end, infrared spectroscopy (IR) is a good candidate with which to perform rapid and non-destructive measurements. However, IR-based measurements rely on a calibration step linking the measured spectra to the concentrations of the compounds of interest. This calibration may suffer with problems of robustness when the measuring conditions change, such as when some chemicals not present in the calibration spectra are added when using the IR sensor. In this study, a method based on orthogonal projection, dynamic orthogonal projection (DOP), was tested for its ability to cope with the robustness problem caused by the addition of ammonia in a pilot-scale anaerobic digester, whose volatile fatty acid concentrations were monitored by mid-IR spectrometry. The results demonstrate that DOP has significant potential as a form of process analytical technology.","PeriodicalId":8123,"journal":{"name":"AppliedChem","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvements in the Robustness of Mid-Infrared Spectroscopy Models against Chemical Interferences: Application to Monitoring of Anaerobic Digestion Processes\",\"authors\":\"M. Zeaiter, É. Latrille, P. Gras, J. Steyer, V. Bellon-Maurel, J. Roger\",\"doi\":\"10.3390/appliedchem2020008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monitoring and control of bioprocesses rely on the measurement of the main metabolite concentrations. To this end, infrared spectroscopy (IR) is a good candidate with which to perform rapid and non-destructive measurements. However, IR-based measurements rely on a calibration step linking the measured spectra to the concentrations of the compounds of interest. This calibration may suffer with problems of robustness when the measuring conditions change, such as when some chemicals not present in the calibration spectra are added when using the IR sensor. In this study, a method based on orthogonal projection, dynamic orthogonal projection (DOP), was tested for its ability to cope with the robustness problem caused by the addition of ammonia in a pilot-scale anaerobic digester, whose volatile fatty acid concentrations were monitored by mid-IR spectrometry. The results demonstrate that DOP has significant potential as a form of process analytical technology.\",\"PeriodicalId\":8123,\"journal\":{\"name\":\"AppliedChem\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AppliedChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/appliedchem2020008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AppliedChem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/appliedchem2020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvements in the Robustness of Mid-Infrared Spectroscopy Models against Chemical Interferences: Application to Monitoring of Anaerobic Digestion Processes
The monitoring and control of bioprocesses rely on the measurement of the main metabolite concentrations. To this end, infrared spectroscopy (IR) is a good candidate with which to perform rapid and non-destructive measurements. However, IR-based measurements rely on a calibration step linking the measured spectra to the concentrations of the compounds of interest. This calibration may suffer with problems of robustness when the measuring conditions change, such as when some chemicals not present in the calibration spectra are added when using the IR sensor. In this study, a method based on orthogonal projection, dynamic orthogonal projection (DOP), was tested for its ability to cope with the robustness problem caused by the addition of ammonia in a pilot-scale anaerobic digester, whose volatile fatty acid concentrations were monitored by mid-IR spectrometry. The results demonstrate that DOP has significant potential as a form of process analytical technology.