一种高效的近似中间度中心性计算算法

Mostafa Haghir Chehreghani
{"title":"一种高效的近似中间度中心性计算算法","authors":"Mostafa Haghir Chehreghani","doi":"10.1145/2505515.2507826","DOIUrl":null,"url":null,"abstract":"Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An efficient algorithm for approximate betweenness centrality computation\",\"authors\":\"Mostafa Haghir Chehreghani\",\"doi\":\"10.1145/2505515.2507826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2507826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

中间中心性是一种重要的中心性度量,广泛应用于社会网络分析、路线规划等领域。然而,即使对于中等规模的网络,也很难计算出精确的中间值。在本文中,我们提出了一个通用的随机框架来无偏逼近中间性中心性。所提出的框架可以适应不同的采样技术,并给出不同的方法。讨论了一种有前途的采样技术为使近似误差最小化所应满足的条件,并提出了一种部分满足这些条件的采样方法。我们进行了大量的实验,并证明了该方法的高效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient algorithm for approximate betweenness centrality computation
Betweenness centrality is an important centrality measure widely used in social network analysis, route planning etc. However, even for mid-size networks, it is practically intractable to compute exact betweenness scores. In this paper, we propose a generic randomized framework for unbiased approximation of betweenness centrality. The proposed framework can be adapted with different sampling techniques and give diverse methods. We discuss the conditions a promising sampling technique should satisfy to minimize the approximation error and present a sampling method partially satisfying the conditions. We perform extensive experiments and show the high efficiency and accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1