{"title":"一种降低数据冗余的广义方法","authors":"Y. Iliash","doi":"10.47839/ijc.21.4.2786","DOIUrl":null,"url":null,"abstract":"In this paper, a method of decreasing the redundancy of information flow by using recurrent properties of Galois code sequences is proposed. For this purpose, the service information is compiled and the priority compression is identified. The method is based on applying one of the adaptive algorithms (prediction first-order, interpolation zero-order, interpolation first-order) by comparing the efficiency of its use when applied to the selected fragments of a signal. It is shown that the developed method is effective for the quick-change signals when the structure and behavior of a signal change drastically. The efficiency of redundancy decreasing at the different sampling rate and the number of the significant samples is evaluated. This makes it possible to establish the limits of the positive effect for redundancy of information flows for the existing and developed methods. Experimental research is carried out for various permissible deviations with obtaining the number of the significant readings. A comparison of the obtained data with results of applying the existing methods in deep pumping installations proved that the proposed method is in 1.3 times more effective than existing ones.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Method of Decreasing Data Redundancy\",\"authors\":\"Y. Iliash\",\"doi\":\"10.47839/ijc.21.4.2786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method of decreasing the redundancy of information flow by using recurrent properties of Galois code sequences is proposed. For this purpose, the service information is compiled and the priority compression is identified. The method is based on applying one of the adaptive algorithms (prediction first-order, interpolation zero-order, interpolation first-order) by comparing the efficiency of its use when applied to the selected fragments of a signal. It is shown that the developed method is effective for the quick-change signals when the structure and behavior of a signal change drastically. The efficiency of redundancy decreasing at the different sampling rate and the number of the significant samples is evaluated. This makes it possible to establish the limits of the positive effect for redundancy of information flows for the existing and developed methods. Experimental research is carried out for various permissible deviations with obtaining the number of the significant readings. A comparison of the obtained data with results of applying the existing methods in deep pumping installations proved that the proposed method is in 1.3 times more effective than existing ones.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.21.4.2786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.4.2786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
A Generalized Method of Decreasing Data Redundancy
In this paper, a method of decreasing the redundancy of information flow by using recurrent properties of Galois code sequences is proposed. For this purpose, the service information is compiled and the priority compression is identified. The method is based on applying one of the adaptive algorithms (prediction first-order, interpolation zero-order, interpolation first-order) by comparing the efficiency of its use when applied to the selected fragments of a signal. It is shown that the developed method is effective for the quick-change signals when the structure and behavior of a signal change drastically. The efficiency of redundancy decreasing at the different sampling rate and the number of the significant samples is evaluated. This makes it possible to establish the limits of the positive effect for redundancy of information flows for the existing and developed methods. Experimental research is carried out for various permissible deviations with obtaining the number of the significant readings. A comparison of the obtained data with results of applying the existing methods in deep pumping installations proved that the proposed method is in 1.3 times more effective than existing ones.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.