{"title":"不同阿拉伯文手写文字识别系统组合的框架","authors":"H. E. Abed, V. Märgner","doi":"10.1109/ICPR.2010.469","DOIUrl":null,"url":null,"abstract":"In this paper we present A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems to achieve a decision with a higher performance. This performance can be expressed by lower rejection rates and higher recognition rates. The used methods range from voting schemes based on results of different recognizer to a neural network decision based on normalized confidences. This work presents an extension of the well known combination methods for a large lexicon, an extension from maximum 30 classes (e.g., 10 classes for digits classification) to 937 classes for the IfN/ENIT-database. In addition, different reject rules based on the evaluation and analysis of individual and combined systems output are discussed. Different threshold function for reject levels are tested and evaluated. Tests with a set of recognizer, which participated in the ICDAR 2007 competition and based on set coming from the IfN/ENIT-database show that a word error rate (WER) of 5.29% without reject and with a reject rate less than 25% even a word error rate of less than 1%.","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"14 1","pages":"1904-1907"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems\",\"authors\":\"H. E. Abed, V. Märgner\",\"doi\":\"10.1109/ICPR.2010.469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems to achieve a decision with a higher performance. This performance can be expressed by lower rejection rates and higher recognition rates. The used methods range from voting schemes based on results of different recognizer to a neural network decision based on normalized confidences. This work presents an extension of the well known combination methods for a large lexicon, an extension from maximum 30 classes (e.g., 10 classes for digits classification) to 937 classes for the IfN/ENIT-database. In addition, different reject rules based on the evaluation and analysis of individual and combined systems output are discussed. Different threshold function for reject levels are tested and evaluated. Tests with a set of recognizer, which participated in the ICDAR 2007 competition and based on set coming from the IfN/ENIT-database show that a word error rate (WER) of 5.29% without reject and with a reject rate less than 25% even a word error rate of less than 1%.\",\"PeriodicalId\":74516,\"journal\":{\"name\":\"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition\",\"volume\":\"14 1\",\"pages\":\"1904-1907\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems
In this paper we present A Framework for the Combination of Different Arabic Handwritten Word Recognition Systems to achieve a decision with a higher performance. This performance can be expressed by lower rejection rates and higher recognition rates. The used methods range from voting schemes based on results of different recognizer to a neural network decision based on normalized confidences. This work presents an extension of the well known combination methods for a large lexicon, an extension from maximum 30 classes (e.g., 10 classes for digits classification) to 937 classes for the IfN/ENIT-database. In addition, different reject rules based on the evaluation and analysis of individual and combined systems output are discussed. Different threshold function for reject levels are tested and evaluated. Tests with a set of recognizer, which participated in the ICDAR 2007 competition and based on set coming from the IfN/ENIT-database show that a word error rate (WER) of 5.29% without reject and with a reject rate less than 25% even a word error rate of less than 1%.