挖掘糖尿病并发症和治疗模式,为临床决策提供支持

Lu Liu, Jie Tang, Yu Cheng, Ankit Agrawal, W. Liao, A. Choudhary
{"title":"挖掘糖尿病并发症和治疗模式,为临床决策提供支持","authors":"Lu Liu, Jie Tang, Yu Cheng, Ankit Agrawal, W. Liao, A. Choudhary","doi":"10.1145/2505515.2505549","DOIUrl":null,"url":null,"abstract":"The fast development of hospital information systems (HIS) produces a large volume of electronic medical records, which provides a comprehensive source for exploratory analysis and statistics to support clinical decision-making. In this paper, we investigate how to utilize the heterogeneous medical records to aid the clinical treatments of diabetes mellitus. Diabetes mellitus, simply diabetes, is a group of metabolic diseases, which is often accompanied with many complications. We propose a Symptom-Diagnosis-Treatment model to mine the diabetes complication patterns and to unveil the latent association mechanism between treatments and symptoms from large volume of electronic medical records. Furthermore, we study the demographic statistics of patient population w.r.t. complication patterns in real data and observe several interesting phenomena. The discovered complication and treatment patterns can help physicians better understand their specialty and learn previous experiences. Our experiments on a collection of one-year diabetes clinical records from a famous geriatric hospital demonstrate the effectiveness of our approaches.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Mining diabetes complication and treatment patterns for clinical decision support\",\"authors\":\"Lu Liu, Jie Tang, Yu Cheng, Ankit Agrawal, W. Liao, A. Choudhary\",\"doi\":\"10.1145/2505515.2505549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fast development of hospital information systems (HIS) produces a large volume of electronic medical records, which provides a comprehensive source for exploratory analysis and statistics to support clinical decision-making. In this paper, we investigate how to utilize the heterogeneous medical records to aid the clinical treatments of diabetes mellitus. Diabetes mellitus, simply diabetes, is a group of metabolic diseases, which is often accompanied with many complications. We propose a Symptom-Diagnosis-Treatment model to mine the diabetes complication patterns and to unveil the latent association mechanism between treatments and symptoms from large volume of electronic medical records. Furthermore, we study the demographic statistics of patient population w.r.t. complication patterns in real data and observe several interesting phenomena. The discovered complication and treatment patterns can help physicians better understand their specialty and learn previous experiences. Our experiments on a collection of one-year diabetes clinical records from a famous geriatric hospital demonstrate the effectiveness of our approaches.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2505549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

医院信息系统(HIS)的快速发展产生了大量的电子病历,为临床决策提供了全面的探索性分析和统计来源。本文探讨如何利用异质病案辅助糖尿病的临床治疗。糖尿病,简称糖尿病,是一组代谢性疾病,常伴有许多并发症。我们提出了一个症状-诊断-治疗模型,从大量的电子病历中挖掘糖尿病并发症的模式,揭示治疗与症状之间潜在的关联机制。此外,我们还研究了实际数据中患者群体的并发症模式的人口学统计,并观察到一些有趣的现象。发现的并发症和治疗模式可以帮助医生更好地了解他们的专业和学习以前的经验。我们对一家著名老年医院的一年期糖尿病临床记录进行了实验,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining diabetes complication and treatment patterns for clinical decision support
The fast development of hospital information systems (HIS) produces a large volume of electronic medical records, which provides a comprehensive source for exploratory analysis and statistics to support clinical decision-making. In this paper, we investigate how to utilize the heterogeneous medical records to aid the clinical treatments of diabetes mellitus. Diabetes mellitus, simply diabetes, is a group of metabolic diseases, which is often accompanied with many complications. We propose a Symptom-Diagnosis-Treatment model to mine the diabetes complication patterns and to unveil the latent association mechanism between treatments and symptoms from large volume of electronic medical records. Furthermore, we study the demographic statistics of patient population w.r.t. complication patterns in real data and observe several interesting phenomena. The discovered complication and treatment patterns can help physicians better understand their specialty and learn previous experiences. Our experiments on a collection of one-year diabetes clinical records from a famous geriatric hospital demonstrate the effectiveness of our approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1