不断发展的在线社交网络的隐私保护数据发布

IF 0.5 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Information Security and Privacy Pub Date : 2016-01-02 DOI:10.1080/15536548.2016.1143765
Wei Chang, Jie Wu
{"title":"不断发展的在线社交网络的隐私保护数据发布","authors":"Wei Chang, Jie Wu","doi":"10.1080/15536548.2016.1143765","DOIUrl":null,"url":null,"abstract":"ABSTRACT The increasing growth of online social networks provides an unprecedented opportunity to study the complex interactions among human beings. Privacy-preserved network-data publishing is becoming increasingly popular in both industry and academia. This articles focuses on evolving social subscription networks (ESSN), which indicate social actors’ participation in certain media channels, such as Hollywood stars’ Twitter pages, during a series of time intervals. The discussion first introduces a new identity disclosure attack by exploring the subscribed channel sizes of a social actor and the actor’s frequency of joining/leaving the channels. For privacy protection, K-anonymity should be ensured for the whole evolving graph. However, unlike the conventional topology information, such as node degree, the ESSN data points are much more sparse. Moreover, during the construction of anonymous groups, the unpopular channel-related information is likely to be discarded. How to maximally preserve ESSN data utility during anonymization is an open problem. These authors propose an effective three-step framework to solve it: data space compression, anonymity construction, and realizable publishing. Also provided are comprehensive studies on the performance of this approach. Extensive results show that this approach is effective in terms of privacy, utility, and efficacy. To the best of the knowledge of these authors, this work is the first systematic study to the anonymization of time-evolving multi-relation graphs.","PeriodicalId":44332,"journal":{"name":"International Journal of Information Security and Privacy","volume":"15 12 1","pages":"14 - 31"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Privacy-preserved data publishing of evolving online social networks\",\"authors\":\"Wei Chang, Jie Wu\",\"doi\":\"10.1080/15536548.2016.1143765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The increasing growth of online social networks provides an unprecedented opportunity to study the complex interactions among human beings. Privacy-preserved network-data publishing is becoming increasingly popular in both industry and academia. This articles focuses on evolving social subscription networks (ESSN), which indicate social actors’ participation in certain media channels, such as Hollywood stars’ Twitter pages, during a series of time intervals. The discussion first introduces a new identity disclosure attack by exploring the subscribed channel sizes of a social actor and the actor’s frequency of joining/leaving the channels. For privacy protection, K-anonymity should be ensured for the whole evolving graph. However, unlike the conventional topology information, such as node degree, the ESSN data points are much more sparse. Moreover, during the construction of anonymous groups, the unpopular channel-related information is likely to be discarded. How to maximally preserve ESSN data utility during anonymization is an open problem. These authors propose an effective three-step framework to solve it: data space compression, anonymity construction, and realizable publishing. Also provided are comprehensive studies on the performance of this approach. Extensive results show that this approach is effective in terms of privacy, utility, and efficacy. To the best of the knowledge of these authors, this work is the first systematic study to the anonymization of time-evolving multi-relation graphs.\",\"PeriodicalId\":44332,\"journal\":{\"name\":\"International Journal of Information Security and Privacy\",\"volume\":\"15 12 1\",\"pages\":\"14 - 31\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15536548.2016.1143765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15536548.2016.1143765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

摘要

在线社交网络的日益增长为研究人类之间复杂的互动提供了前所未有的机会。保护隐私的网络数据发布在工业界和学术界都越来越受欢迎。本文关注的是不断发展的社会订阅网络(ESSN),它表明社会行动者在一定时间间隔内参与某些媒体渠道,如好莱坞明星的Twitter页面。该讨论首先介绍了一种新的身份披露攻击,通过探索一个社会参与者的订阅频道大小和参与者加入/离开频道的频率。为了保护隐私,需要保证整个演化图的k -匿名性。然而,与传统的拓扑信息(如节点度)不同,ESSN数据点更加稀疏。此外,在匿名群组的建设过程中,不受欢迎的频道相关信息很可能被丢弃。如何在匿名化期间最大限度地保留ESSN数据效用是一个悬而未决的问题。这些作者提出了一个有效的三步框架来解决这个问题:数据空间压缩、匿名构建和可实现发布。还提供了对该方法性能的全面研究。广泛的结果表明,这种方法在隐私、实用性和有效性方面是有效的。据这些作者所知,这项工作是第一次系统地研究时间演变的多关系图的匿名化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy-preserved data publishing of evolving online social networks
ABSTRACT The increasing growth of online social networks provides an unprecedented opportunity to study the complex interactions among human beings. Privacy-preserved network-data publishing is becoming increasingly popular in both industry and academia. This articles focuses on evolving social subscription networks (ESSN), which indicate social actors’ participation in certain media channels, such as Hollywood stars’ Twitter pages, during a series of time intervals. The discussion first introduces a new identity disclosure attack by exploring the subscribed channel sizes of a social actor and the actor’s frequency of joining/leaving the channels. For privacy protection, K-anonymity should be ensured for the whole evolving graph. However, unlike the conventional topology information, such as node degree, the ESSN data points are much more sparse. Moreover, during the construction of anonymous groups, the unpopular channel-related information is likely to be discarded. How to maximally preserve ESSN data utility during anonymization is an open problem. These authors propose an effective three-step framework to solve it: data space compression, anonymity construction, and realizable publishing. Also provided are comprehensive studies on the performance of this approach. Extensive results show that this approach is effective in terms of privacy, utility, and efficacy. To the best of the knowledge of these authors, this work is the first systematic study to the anonymization of time-evolving multi-relation graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Information Security and Privacy
International Journal of Information Security and Privacy COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.50
自引率
0.00%
发文量
73
期刊介绍: As information technology and the Internet become more and more ubiquitous and pervasive in our daily lives, there is an essential need for a more thorough understanding of information security and privacy issues and concerns. The International Journal of Information Security and Privacy (IJISP) creates and fosters a forum where research in the theory and practice of information security and privacy is advanced. IJISP publishes high quality papers dealing with a wide range of issues, ranging from technical, legal, regulatory, organizational, managerial, cultural, ethical and human aspects of information security and privacy, through a balanced mix of theoretical and empirical research articles, case studies, book reviews, tutorials, and editorials. This journal encourages submission of manuscripts that present research frameworks, methods, methodologies, theory development and validation, case studies, simulation results and analysis, technological architectures, infrastructure issues in design, and implementation and maintenance of secure and privacy preserving initiatives.
期刊最新文献
Adaptive Personalized Randomized Response Method Based on Local Differential Privacy A Novel CNN-LSTM Fusion-Based Intrusion Detection Method for Industrial Internet A System Dynamics Approach to Evaluate Advanced Persistent Threat Vectors Trust and Voice Biometrics Authentication for Internet of Things “Every Dog Has His Day”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1