黑暗条件下盐藻的沉积速率

Angelica Naka, Midori Kurahashi
{"title":"黑暗条件下盐藻的沉积速率","authors":"Angelica Naka, Midori Kurahashi","doi":"10.3390/applbiosci2010002","DOIUrl":null,"url":null,"abstract":"Microalgae are a source of carbohydrates, proteins and lipids. Thus, they can be considered as raw material to transition from current fossil fuel-based refineries to biorefineries. Microalgae harvesting is considered a major challenge in biomass production. There are several harvesting techniques, but the majority of them are either expensive or not effective. The harvesting method that we propose is sedimentation-induced by light blockage, taking advantage of the motility characteristics of certain microalgae. In this research, the halophilic microalgae Dunaliella salina was selected. Experiments were conducted under light and dark conditions to compare the sedimentation rates. Sedimentation behavior was measured by collecting data on the optical density and cell count under both light and dark conditions. The results showed that, under light conditions, the cell count in the middle of the flask decreased from 1 × 106 cell/mL to 5 × 104 cell/mL after 50 days. Under dark conditions sedimentation took less than 10 days for complete settlement. Leaving Dunaliella salina under dark conditions may constitute a promising harvest method as this provides a high recovery rate and requires low energy.","PeriodicalId":14998,"journal":{"name":"Journal of Applied Biosciences","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sedimentation Rate of Dunaliella salina in Dark Conditions\",\"authors\":\"Angelica Naka, Midori Kurahashi\",\"doi\":\"10.3390/applbiosci2010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microalgae are a source of carbohydrates, proteins and lipids. Thus, they can be considered as raw material to transition from current fossil fuel-based refineries to biorefineries. Microalgae harvesting is considered a major challenge in biomass production. There are several harvesting techniques, but the majority of them are either expensive or not effective. The harvesting method that we propose is sedimentation-induced by light blockage, taking advantage of the motility characteristics of certain microalgae. In this research, the halophilic microalgae Dunaliella salina was selected. Experiments were conducted under light and dark conditions to compare the sedimentation rates. Sedimentation behavior was measured by collecting data on the optical density and cell count under both light and dark conditions. The results showed that, under light conditions, the cell count in the middle of the flask decreased from 1 × 106 cell/mL to 5 × 104 cell/mL after 50 days. Under dark conditions sedimentation took less than 10 days for complete settlement. Leaving Dunaliella salina under dark conditions may constitute a promising harvest method as this provides a high recovery rate and requires low energy.\",\"PeriodicalId\":14998,\"journal\":{\"name\":\"Journal of Applied Biosciences\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/applbiosci2010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applbiosci2010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微藻是碳水化合物、蛋白质和脂质的来源。因此,它们可以被视为从目前以化石燃料为基础的炼油厂向生物炼油厂过渡的原材料。微藻的收获被认为是生物质生产中的一个主要挑战。有几种收割技术,但大多数要么昂贵,要么无效。我们提出的收集方法是利用某些微藻的运动特性,通过光阻挡诱导沉积。本研究选择了嗜盐微藻杜氏盐藻。在光照和黑暗条件下进行了实验,比较了沉积速率。通过收集光密度和细胞计数在光照和黑暗条件下的数据来测量沉积行为。结果表明,在光照条件下,50天后,瓶中部的细胞计数从1 × 106细胞/mL下降到5 × 104细胞/mL。在黑暗条件下,完全沉降只用了不到10天的时间。在黑暗条件下留下杜氏盐藻可能是一种有前途的收获方法,因为它具有高回收率和低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sedimentation Rate of Dunaliella salina in Dark Conditions
Microalgae are a source of carbohydrates, proteins and lipids. Thus, they can be considered as raw material to transition from current fossil fuel-based refineries to biorefineries. Microalgae harvesting is considered a major challenge in biomass production. There are several harvesting techniques, but the majority of them are either expensive or not effective. The harvesting method that we propose is sedimentation-induced by light blockage, taking advantage of the motility characteristics of certain microalgae. In this research, the halophilic microalgae Dunaliella salina was selected. Experiments were conducted under light and dark conditions to compare the sedimentation rates. Sedimentation behavior was measured by collecting data on the optical density and cell count under both light and dark conditions. The results showed that, under light conditions, the cell count in the middle of the flask decreased from 1 × 106 cell/mL to 5 × 104 cell/mL after 50 days. Under dark conditions sedimentation took less than 10 days for complete settlement. Leaving Dunaliella salina under dark conditions may constitute a promising harvest method as this provides a high recovery rate and requires low energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Chaperone Hsp90, a Key Player in Salivary Gland Tumorigenesis Determination of Target Crop Loads for Maximising Fruit Quality and Return Bloom in Several Apple Cultivars Agrigenomic Diversity Unleashed: Current Single Nucleotide Polymorphism Genotyping Methods for the Agricultural Sciences The Food-Crushing Reflex and Its Inhibition Effects of Patterned Electromagnetic Fields and Light-Emitting Diodes on Cancer Cells: Impact on Cell Density and Biophoton Emission When Applied Individually vs. Simultaneously
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1