用分子动力学方法模拟大豆卵磷脂磷脂与长春西汀形成脂质体

Yu. A. Polkovnikova
{"title":"用分子动力学方法模拟大豆卵磷脂磷脂与长春西汀形成脂质体","authors":"Yu. A. Polkovnikova","doi":"10.33380/2305-2066-2021-10-3-83-87","DOIUrl":null,"url":null,"abstract":"Introduction. Liposomal preparations have the following advantages: they protect body cells from the toxic effects of drugs; prolong the action of the drug introduced into the body; protect medicinal substances from degradation; promote the manifestation of targeted specificity due to selective penetration from blood into tissues; change the pharmacokinetics of drugs, increasing their pharmacological effectiveness; allow you to create a water-soluble form of a number of medicinal substances, thereby increasing their bioavailability. The development of liposomal forms of vinpocetine is highly relevant. Currently, when developing the composition of liposomal forms, molecular modeling methods are widely used, which are a convenient method for predicting both the properties of the membranes themselves and aspects of the interaction of membranes with small molecules or proteins.Aim. The aim of this study is to model the process of liposome assembly from soy lecithin phospholipids in the presence of vinpocetine by the molecular dynamics method; as well as predicting the distribution of vinpocetine between the internal cavity of the liposome, the phospholipid membrane, and the dispersion medium based on the simulation results.Materials and methods. To simulate the process of liposome formation, the method of coarse-grained molecular dynamics in a Martini 2.2 force field was used using the Gromacs 2016.4 program. The assembly of the simulated system - a solution of soy lecithin phospholipids in water was performed using the Internet service Charmm-GUI-> Inputgenerator-> Martinimaker-> Randombuilder.Results and discussion. The results of molecular modeling showed that the vinpocetine molecules did not penetrate into the liposome, but were adsorbed on its surface. This is due to the low solubility of vipocetin in the hydrophobic medium of the soy lecithin liposome membrane.Conclusion. It was shown that the minimum diameter of a liposome formed from purified soy lecithin is 15.3 nm. Vinpocetine does not penetrate into liposomes from purified soy lecithin, but is adsorbed on the outer surface of their membrane. The surface excess in this case, according to the results of modeling coarse-grained molecular dynamics at a temperature of 298 K in an alcohol-water medium, is 1.2 • 10-7 mol/m2.","PeriodicalId":11272,"journal":{"name":"Drug development & registration","volume":"15 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling the Formation of Liposomes with Vinpocetine from Soy Lecithin Phospholipids by Molecular Dynamics\",\"authors\":\"Yu. A. Polkovnikova\",\"doi\":\"10.33380/2305-2066-2021-10-3-83-87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Liposomal preparations have the following advantages: they protect body cells from the toxic effects of drugs; prolong the action of the drug introduced into the body; protect medicinal substances from degradation; promote the manifestation of targeted specificity due to selective penetration from blood into tissues; change the pharmacokinetics of drugs, increasing their pharmacological effectiveness; allow you to create a water-soluble form of a number of medicinal substances, thereby increasing their bioavailability. The development of liposomal forms of vinpocetine is highly relevant. Currently, when developing the composition of liposomal forms, molecular modeling methods are widely used, which are a convenient method for predicting both the properties of the membranes themselves and aspects of the interaction of membranes with small molecules or proteins.Aim. The aim of this study is to model the process of liposome assembly from soy lecithin phospholipids in the presence of vinpocetine by the molecular dynamics method; as well as predicting the distribution of vinpocetine between the internal cavity of the liposome, the phospholipid membrane, and the dispersion medium based on the simulation results.Materials and methods. To simulate the process of liposome formation, the method of coarse-grained molecular dynamics in a Martini 2.2 force field was used using the Gromacs 2016.4 program. The assembly of the simulated system - a solution of soy lecithin phospholipids in water was performed using the Internet service Charmm-GUI-> Inputgenerator-> Martinimaker-> Randombuilder.Results and discussion. The results of molecular modeling showed that the vinpocetine molecules did not penetrate into the liposome, but were adsorbed on its surface. This is due to the low solubility of vipocetin in the hydrophobic medium of the soy lecithin liposome membrane.Conclusion. It was shown that the minimum diameter of a liposome formed from purified soy lecithin is 15.3 nm. Vinpocetine does not penetrate into liposomes from purified soy lecithin, but is adsorbed on the outer surface of their membrane. The surface excess in this case, according to the results of modeling coarse-grained molecular dynamics at a temperature of 298 K in an alcohol-water medium, is 1.2 • 10-7 mol/m2.\",\"PeriodicalId\":11272,\"journal\":{\"name\":\"Drug development & registration\",\"volume\":\"15 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug development & registration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33380/2305-2066-2021-10-3-83-87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug development & registration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33380/2305-2066-2021-10-3-83-87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍。脂质体制剂具有以下优点:它们保护人体细胞免受药物的毒性作用;延长药物进入体内的作用;保护药用物质免遭降解;从血液到组织的选择性渗透促进了靶向特异性的表现;改变药物的药代动力学,提高药物的药效;允许您创建一些药用物质的水溶性形式,从而提高其生物利用度。长春西汀脂质体形式的发展是高度相关的。目前,在研究脂质体的组成时,分子模拟方法被广泛使用,这是一种预测膜本身性质以及膜与小分子或蛋白质相互作用方面的方便方法。本研究的目的是用分子动力学方法模拟长春西汀存在下大豆卵磷脂磷脂的脂质体组装过程;并根据模拟结果预测长春西汀在脂质体内腔、磷脂膜和分散介质之间的分布。材料和方法。为了模拟脂质体的形成过程,使用Gromacs 2016.4程序,采用Martini 2.2力场中的粗粒度分子动力学方法。利用互联网服务Charmm-GUI-> Inputgenerator-> Martinimaker-> Randombuilder进行模拟系统-大豆卵磷脂水溶液的组装。结果和讨论。分子模拟结果表明,长春西汀分子并没有渗透到脂质体中,而是吸附在脂质体表面。这是由于维生素在疏水介质大豆卵磷脂脂质体膜中的溶解度较低。结果表明,纯化的大豆卵磷脂形成的脂质体的最小直径为15.3 nm。长春西汀不会从纯化的大豆卵磷脂渗透到脂质体中,而是被吸附在其膜的外表面。在这种情况下,根据在酒精-水介质中温度为298 K的粗粒度分子动力学建模结果,表面过量为1.2•10-7 mol/m2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling the Formation of Liposomes with Vinpocetine from Soy Lecithin Phospholipids by Molecular Dynamics
Introduction. Liposomal preparations have the following advantages: they protect body cells from the toxic effects of drugs; prolong the action of the drug introduced into the body; protect medicinal substances from degradation; promote the manifestation of targeted specificity due to selective penetration from blood into tissues; change the pharmacokinetics of drugs, increasing their pharmacological effectiveness; allow you to create a water-soluble form of a number of medicinal substances, thereby increasing their bioavailability. The development of liposomal forms of vinpocetine is highly relevant. Currently, when developing the composition of liposomal forms, molecular modeling methods are widely used, which are a convenient method for predicting both the properties of the membranes themselves and aspects of the interaction of membranes with small molecules or proteins.Aim. The aim of this study is to model the process of liposome assembly from soy lecithin phospholipids in the presence of vinpocetine by the molecular dynamics method; as well as predicting the distribution of vinpocetine between the internal cavity of the liposome, the phospholipid membrane, and the dispersion medium based on the simulation results.Materials and methods. To simulate the process of liposome formation, the method of coarse-grained molecular dynamics in a Martini 2.2 force field was used using the Gromacs 2016.4 program. The assembly of the simulated system - a solution of soy lecithin phospholipids in water was performed using the Internet service Charmm-GUI-> Inputgenerator-> Martinimaker-> Randombuilder.Results and discussion. The results of molecular modeling showed that the vinpocetine molecules did not penetrate into the liposome, but were adsorbed on its surface. This is due to the low solubility of vipocetin in the hydrophobic medium of the soy lecithin liposome membrane.Conclusion. It was shown that the minimum diameter of a liposome formed from purified soy lecithin is 15.3 nm. Vinpocetine does not penetrate into liposomes from purified soy lecithin, but is adsorbed on the outer surface of their membrane. The surface excess in this case, according to the results of modeling coarse-grained molecular dynamics at a temperature of 298 K in an alcohol-water medium, is 1.2 • 10-7 mol/m2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling the Formation of Liposomes with Vinpocetine from Soy Lecithin Phospholipids by Molecular Dynamics REGISTRATION DOCUMENTATION AND AMENDMENTS TO IT AS AN ELEMENT OF A QUALITY MANAGEMENT SYSTEM IN PRODUCTION OF ANTI-RABIES IMMUNOGLOBULIN (REVIEW)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1