预训练深度神经网络对番茄叶病预测的影响

Mohamed Bouni, Badr Hssina, K. Douzi, Samira Douzi
{"title":"预训练深度神经网络对番茄叶病预测的影响","authors":"Mohamed Bouni, Badr Hssina, K. Douzi, Samira Douzi","doi":"10.1155/2023/5051005","DOIUrl":null,"url":null,"abstract":"The economic prosperity of a country is highly dependent on agriculture. The use of technology in agriculture has greatly contributed to the economic prosperity of industrialized countries and is crucial for the growth of emerging countries. One major challenge in agriculture is the detection and control of plant diseases, which can greatly affect food production and population well-being. Plant illnesses have a substantial effect on plant productivity and quality. The detection of various types of diseases in plants with bare eyes is time consuming and a difficult task with little precision. Mainly our primary concern is tomato crops. The economic demand for tomatoes has grown dramatically over time. The complicated task of controlling tomato infection requires ongoing care during the crop cycle and consumes a considerable amount of the total cost of production. To classify tomato diseases, we made the use of the pretrained deep neural networks and automation, which are crucial for this method. Digital image processing can be used to monitor plant disease. Deep learning has made remarkable improvements in digital image processing in recent years, surpassing the older techniques. This article identifies tomato leaf disease using a deep convolutional neural network (CNN) and transfer learning. The CNN’s backbone comprises AlexNet, ResNet, VGG-16, and DenseNet. The Adam and RmsProp optimization methods examine these networks’ relative performance, demonstrating that the DenseNet model with the RmsProp optimization approach achieves the most significant outcomes with the best accuracy of 99.9%.","PeriodicalId":23352,"journal":{"name":"Turkish J. Electr. Eng. Comput. Sci.","volume":"696 1","pages":"5051005:1-5051005:11"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of Pretrained Deep Neural Networks for Tomato Leaf Disease Prediction\",\"authors\":\"Mohamed Bouni, Badr Hssina, K. Douzi, Samira Douzi\",\"doi\":\"10.1155/2023/5051005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The economic prosperity of a country is highly dependent on agriculture. The use of technology in agriculture has greatly contributed to the economic prosperity of industrialized countries and is crucial for the growth of emerging countries. One major challenge in agriculture is the detection and control of plant diseases, which can greatly affect food production and population well-being. Plant illnesses have a substantial effect on plant productivity and quality. The detection of various types of diseases in plants with bare eyes is time consuming and a difficult task with little precision. Mainly our primary concern is tomato crops. The economic demand for tomatoes has grown dramatically over time. The complicated task of controlling tomato infection requires ongoing care during the crop cycle and consumes a considerable amount of the total cost of production. To classify tomato diseases, we made the use of the pretrained deep neural networks and automation, which are crucial for this method. Digital image processing can be used to monitor plant disease. Deep learning has made remarkable improvements in digital image processing in recent years, surpassing the older techniques. This article identifies tomato leaf disease using a deep convolutional neural network (CNN) and transfer learning. The CNN’s backbone comprises AlexNet, ResNet, VGG-16, and DenseNet. The Adam and RmsProp optimization methods examine these networks’ relative performance, demonstrating that the DenseNet model with the RmsProp optimization approach achieves the most significant outcomes with the best accuracy of 99.9%.\",\"PeriodicalId\":23352,\"journal\":{\"name\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"volume\":\"696 1\",\"pages\":\"5051005:1-5051005:11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish J. Electr. Eng. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5051005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish J. Electr. Eng. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5051005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一个国家的经济繁荣高度依赖农业。农业技术的使用极大地促进了工业化国家的经济繁荣,对新兴国家的增长至关重要。农业面临的一项重大挑战是发现和控制植物病害,这可能极大地影响粮食生产和人口福祉。植物病害对植物的生产力和质量有重大影响。用肉眼检测植物的各种病害是一项耗时且精度低的艰巨任务。我们主要关心的是番茄作物。随着时间的推移,对西红柿的经济需求急剧增长。控制番茄感染的复杂任务需要在作物周期中持续护理,并消耗相当大的生产总成本。为了对番茄病害进行分类,我们使用了预训练的深度神经网络和自动化,这是该方法的关键。数字图像处理可用于植物病害监测。近年来,深度学习在数字图像处理方面取得了显著的进步,超越了旧的技术。本文使用深度卷积神经网络(CNN)和迁移学习来识别番茄叶病。CNN的主干包括AlexNet、ResNet、VGG-16和DenseNet。Adam和RmsProp优化方法检查了这些网络的相对性能,表明使用RmsProp优化方法的DenseNet模型获得了最显著的结果,准确率最高,达到99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Pretrained Deep Neural Networks for Tomato Leaf Disease Prediction
The economic prosperity of a country is highly dependent on agriculture. The use of technology in agriculture has greatly contributed to the economic prosperity of industrialized countries and is crucial for the growth of emerging countries. One major challenge in agriculture is the detection and control of plant diseases, which can greatly affect food production and population well-being. Plant illnesses have a substantial effect on plant productivity and quality. The detection of various types of diseases in plants with bare eyes is time consuming and a difficult task with little precision. Mainly our primary concern is tomato crops. The economic demand for tomatoes has grown dramatically over time. The complicated task of controlling tomato infection requires ongoing care during the crop cycle and consumes a considerable amount of the total cost of production. To classify tomato diseases, we made the use of the pretrained deep neural networks and automation, which are crucial for this method. Digital image processing can be used to monitor plant disease. Deep learning has made remarkable improvements in digital image processing in recent years, surpassing the older techniques. This article identifies tomato leaf disease using a deep convolutional neural network (CNN) and transfer learning. The CNN’s backbone comprises AlexNet, ResNet, VGG-16, and DenseNet. The Adam and RmsProp optimization methods examine these networks’ relative performance, demonstrating that the DenseNet model with the RmsProp optimization approach achieves the most significant outcomes with the best accuracy of 99.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor Array System Based on Electronic Nose to Detect Borax in Meatballs with Artificial Neural Network Comprehensive Overview of Modern Controllers for Synchronous Reluctance Motor Regular Vehicle Spatial Distribution Estimation Based on Machine Learning Optimized Model Torque Prediction Control Strategy for BLDCM Torque Error and Speed Error Reduction System Low Noise Amplifier at 60 GHz Using Low Loss On-Chip Inductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1