压缩感知恢复的自适应约简集匹配追踪

Michael M. Abdel-Sayed, Ahmed K. F. Khattab, Mohamed Fathy Abu Elyazeed
{"title":"压缩感知恢复的自适应约简集匹配追踪","authors":"Michael M. Abdel-Sayed, Ahmed K. F. Khattab, Mohamed Fathy Abu Elyazeed","doi":"10.1109/ICIP.2016.7532809","DOIUrl":null,"url":null,"abstract":"Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Various greedy recovery algorithms have been proposed to achieve a lower computational complexity compared to the optimal ℓ1 minimization, while maintaining a good reconstruction accuracy. We propose a new greedy recovery algorithm for compressed sensing, called the Adaptive Reduced-set Matching Pursuit (ARMP). Our algorithm achieves higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to ℓ1 minimization in terms of the normalized time-error product, a metric that we introduced to measure the trade-off between the reconstruction time and error.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"4 1","pages":"2499-2503"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive reduced-set matching pursuit for compressed sensing recovery\",\"authors\":\"Michael M. Abdel-Sayed, Ahmed K. F. Khattab, Mohamed Fathy Abu Elyazeed\",\"doi\":\"10.1109/ICIP.2016.7532809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Various greedy recovery algorithms have been proposed to achieve a lower computational complexity compared to the optimal ℓ1 minimization, while maintaining a good reconstruction accuracy. We propose a new greedy recovery algorithm for compressed sensing, called the Adaptive Reduced-set Matching Pursuit (ARMP). Our algorithm achieves higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to ℓ1 minimization in terms of the normalized time-error product, a metric that we introduced to measure the trade-off between the reconstruction time and error.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"4 1\",\"pages\":\"2499-2503\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

压缩感知能够以比奈奎斯特速率低得多的速率获取稀疏信号。各种贪婪恢复算法已经提出,以实现较低的计算复杂度相比,最优的最小化,同时保持良好的重建精度。我们提出了一种新的贪婪恢复算法,称为自适应约简集匹配追踪(ARMP)。与现有的贪婪恢复算法相比,我们的算法在较低的计算复杂度下实现了更高的重建精度。在标准化的时间误差积方面,它甚至优于l1最小化,我们引入了一个度量来衡量重建时间和误差之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive reduced-set matching pursuit for compressed sensing recovery
Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Various greedy recovery algorithms have been proposed to achieve a lower computational complexity compared to the optimal ℓ1 minimization, while maintaining a good reconstruction accuracy. We propose a new greedy recovery algorithm for compressed sensing, called the Adaptive Reduced-set Matching Pursuit (ARMP). Our algorithm achieves higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to ℓ1 minimization in terms of the normalized time-error product, a metric that we introduced to measure the trade-off between the reconstruction time and error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1