{"title":"脂质过氧化产物4-羟基壬烯醛胶束电动色谱分离及激光诱导荧光检测","authors":"Kristina Claeson , Gunnar Thorsén , Bo Karlberg","doi":"10.1016/S0378-4347(01)00374-7","DOIUrl":null,"url":null,"abstract":"<div><p>4-Hydroxnonenal (HNE) is a product of lipid peroxidation in biological systems that causes a variety of harmful biological effects. A method for identifying HNE based on derivatization with the fluorescent reagent dansylhydrazine (5-(dimethylamino)naphthalene-1-sulphonehydrazine (DNSH) followed by micellar electrokinetic chromatography separation laser-induced fluorescence detection has been developed. The derivatization reaction has also been investigated for significant experimental parameters and rat brain homogenates with induced lipid peroxidation have been analysed for HNE contents. The limit of detection (3 <em>S/N</em>) was 30 n<em>M</em> or 0.3 fmol in the injected sample.</p></div>","PeriodicalId":15463,"journal":{"name":"Journal of Chromatography B: Biomedical Sciences and Applications","volume":"763 1","pages":"Pages 133-138"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0378-4347(01)00374-7","citationCount":"7","resultStr":"{\"title\":\"Micellar electrokinetic chromatography separation and laser-induced fluorescence detection of the lipid peroxidation product 4-hydroxynonenal\",\"authors\":\"Kristina Claeson , Gunnar Thorsén , Bo Karlberg\",\"doi\":\"10.1016/S0378-4347(01)00374-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>4-Hydroxnonenal (HNE) is a product of lipid peroxidation in biological systems that causes a variety of harmful biological effects. A method for identifying HNE based on derivatization with the fluorescent reagent dansylhydrazine (5-(dimethylamino)naphthalene-1-sulphonehydrazine (DNSH) followed by micellar electrokinetic chromatography separation laser-induced fluorescence detection has been developed. The derivatization reaction has also been investigated for significant experimental parameters and rat brain homogenates with induced lipid peroxidation have been analysed for HNE contents. The limit of detection (3 <em>S/N</em>) was 30 n<em>M</em> or 0.3 fmol in the injected sample.</p></div>\",\"PeriodicalId\":15463,\"journal\":{\"name\":\"Journal of Chromatography B: Biomedical Sciences and Applications\",\"volume\":\"763 1\",\"pages\":\"Pages 133-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0378-4347(01)00374-7\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B: Biomedical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378434701003747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B: Biomedical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378434701003747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Micellar electrokinetic chromatography separation and laser-induced fluorescence detection of the lipid peroxidation product 4-hydroxynonenal
4-Hydroxnonenal (HNE) is a product of lipid peroxidation in biological systems that causes a variety of harmful biological effects. A method for identifying HNE based on derivatization with the fluorescent reagent dansylhydrazine (5-(dimethylamino)naphthalene-1-sulphonehydrazine (DNSH) followed by micellar electrokinetic chromatography separation laser-induced fluorescence detection has been developed. The derivatization reaction has also been investigated for significant experimental parameters and rat brain homogenates with induced lipid peroxidation have been analysed for HNE contents. The limit of detection (3 S/N) was 30 nM or 0.3 fmol in the injected sample.