4C-3高频超声皮肤有限角度空间复合成像(20mhz)

M. Vogt, H. Ermert
{"title":"4C-3高频超声皮肤有限角度空间复合成像(20mhz)","authors":"M. Vogt, H. Ermert","doi":"10.1109/ULTSYM.2007.71","DOIUrl":null,"url":null,"abstract":"Ultrasound spatial compounding has been proven to successfully improve the image contrast, to achieve a more isotropic resolution and to reduce imaging artifacts in comparison with conventional B-mode imaging. For high- frequency ultrasound (HFUS) imaging of skin, usually linear scans only are performed perpendicularly to the axial direction of sound propagation. In this paper the potential of HFUS limited- angle spatial compounding for skin imaging is evaluated. We have implemented a new 20 MHz ultrasound system for limited- angle (up to plusmn40deg) spatial compound imaging. A sophisticated scanner was designed for high-resolution imaging with a spherically focused single-element transducer. The influence of unknown parameters of the system is eliminated by calibration measurements on a wire phantom. The imaging properties of the implemented system were assessed by means of phantom and in vivo measurements. A ray-tracing method for the compensation of artifacts, which are caused by refraction at the skin surface, is proposed and evaluated.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"41 3 1","pages":"240-243"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"4C-3 Limited-Angle Spatial Compound Imaging of Skin with High-Frequency Ultrasound (20 MHz)\",\"authors\":\"M. Vogt, H. Ermert\",\"doi\":\"10.1109/ULTSYM.2007.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound spatial compounding has been proven to successfully improve the image contrast, to achieve a more isotropic resolution and to reduce imaging artifacts in comparison with conventional B-mode imaging. For high- frequency ultrasound (HFUS) imaging of skin, usually linear scans only are performed perpendicularly to the axial direction of sound propagation. In this paper the potential of HFUS limited- angle spatial compounding for skin imaging is evaluated. We have implemented a new 20 MHz ultrasound system for limited- angle (up to plusmn40deg) spatial compound imaging. A sophisticated scanner was designed for high-resolution imaging with a spherically focused single-element transducer. The influence of unknown parameters of the system is eliminated by calibration measurements on a wire phantom. The imaging properties of the implemented system were assessed by means of phantom and in vivo measurements. A ray-tracing method for the compensation of artifacts, which are caused by refraction at the skin surface, is proposed and evaluated.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"41 3 1\",\"pages\":\"240-243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

与传统的b模式成像相比,超声空间复合已被证明可以成功地提高图像对比度,实现更各向同性的分辨率,并减少成像伪影。对于高频超声(HFUS)皮肤成像,通常仅垂直于声音传播的轴向进行线性扫描。本文评价了高通量有限角度空间复合在皮肤成像中的应用潜力。我们已经实现了一个新的20兆赫超声系统的有限角度(高达+ 40度)空间复合成像。设计了一种具有球面聚焦单元件换能器的高精度扫描仪。通过在线模上进行校准测量,消除了系统未知参数的影响。所实现的系统的成像特性通过幻影和体内测量来评估。提出了一种用于补偿皮肤表面折射产生的伪影的光线追踪方法,并对其进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
4C-3 Limited-Angle Spatial Compound Imaging of Skin with High-Frequency Ultrasound (20 MHz)
Ultrasound spatial compounding has been proven to successfully improve the image contrast, to achieve a more isotropic resolution and to reduce imaging artifacts in comparison with conventional B-mode imaging. For high- frequency ultrasound (HFUS) imaging of skin, usually linear scans only are performed perpendicularly to the axial direction of sound propagation. In this paper the potential of HFUS limited- angle spatial compounding for skin imaging is evaluated. We have implemented a new 20 MHz ultrasound system for limited- angle (up to plusmn40deg) spatial compound imaging. A sophisticated scanner was designed for high-resolution imaging with a spherically focused single-element transducer. The influence of unknown parameters of the system is eliminated by calibration measurements on a wire phantom. The imaging properties of the implemented system were assessed by means of phantom and in vivo measurements. A ray-tracing method for the compensation of artifacts, which are caused by refraction at the skin surface, is proposed and evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10B-3 Vibrating Interventional Device Detection Using Real-Time 3D Color Doppler P5E-8 The Method of Reverberation-Ray Matrix - A New Matrix Analysis of Waves in Piezoelectric Laminates P1D-4 Characteristics of a Novel Magnetic Field Sensor Using Piezoelectric Vibrations P5C-3 Field Simulation Parameters Design for Realistic Statistical Parameters of Radio - Frequency Ultrasound Images 2F-1 Fabrication and Performance of a High-Frequency Geometrically Focussed Composite Transducer with Triangular Pillar Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1