F. Bonsante, J. Danciger, Sara Maloni, Jean-Marc Schlenker
{"title":"双曲和反德西特几何中拟圆凸壳边界上的诱导度规","authors":"F. Bonsante, J. Danciger, Sara Maloni, Jean-Marc Schlenker","doi":"10.2140/gt.2021.25.2827","DOIUrl":null,"url":null,"abstract":"Celebrated work of Alexandrov and Pogorelov determines exactly which metrics on the sphere are induced on the boundary of a compact convex subset of hyperbolic three-space. As a step toward a generalization for unbounded convex subsets, we consider convex regions of hyperbolic three-space bounded by two properly embedded disks which meet at infinity along a Jordan curve in the ideal boundary. In this setting, it is natural to augment the notion of induced metric on the boundary of the convex set to include a gluing map at infinity which records how the asymptotic geometry of the two surfaces compares near points of the limiting Jordan curve. Restricting further to the case in which the induced metrics on the two bounding surfaces have constant curvature $K \\in [-1,0)$ and the Jordan curve at infinity is a quasicircle, the gluing map is naturally a quasisymmetric homeomorphism of the circle. The main result is that for each value of $K$, every quasisymmetric map is achieved as the gluing map at infinity along some quasicircle. We also prove analogous results in the setting of three-dimensional anti de Sitter geometry. Our results may be viewed as universal versions of the conjectures of Thurston and Mess about prescribing the induced metric on the boundary of the convex core of quasifuchsian hyperbolic manifolds and globally hyperbolic anti de Sitter spacetimes.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti-de Sitter geometry\",\"authors\":\"F. Bonsante, J. Danciger, Sara Maloni, Jean-Marc Schlenker\",\"doi\":\"10.2140/gt.2021.25.2827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Celebrated work of Alexandrov and Pogorelov determines exactly which metrics on the sphere are induced on the boundary of a compact convex subset of hyperbolic three-space. As a step toward a generalization for unbounded convex subsets, we consider convex regions of hyperbolic three-space bounded by two properly embedded disks which meet at infinity along a Jordan curve in the ideal boundary. In this setting, it is natural to augment the notion of induced metric on the boundary of the convex set to include a gluing map at infinity which records how the asymptotic geometry of the two surfaces compares near points of the limiting Jordan curve. Restricting further to the case in which the induced metrics on the two bounding surfaces have constant curvature $K \\\\in [-1,0)$ and the Jordan curve at infinity is a quasicircle, the gluing map is naturally a quasisymmetric homeomorphism of the circle. The main result is that for each value of $K$, every quasisymmetric map is achieved as the gluing map at infinity along some quasicircle. We also prove analogous results in the setting of three-dimensional anti de Sitter geometry. Our results may be viewed as universal versions of the conjectures of Thurston and Mess about prescribing the induced metric on the boundary of the convex core of quasifuchsian hyperbolic manifolds and globally hyperbolic anti de Sitter spacetimes.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2827\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2827","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti-de Sitter geometry
Celebrated work of Alexandrov and Pogorelov determines exactly which metrics on the sphere are induced on the boundary of a compact convex subset of hyperbolic three-space. As a step toward a generalization for unbounded convex subsets, we consider convex regions of hyperbolic three-space bounded by two properly embedded disks which meet at infinity along a Jordan curve in the ideal boundary. In this setting, it is natural to augment the notion of induced metric on the boundary of the convex set to include a gluing map at infinity which records how the asymptotic geometry of the two surfaces compares near points of the limiting Jordan curve. Restricting further to the case in which the induced metrics on the two bounding surfaces have constant curvature $K \in [-1,0)$ and the Jordan curve at infinity is a quasicircle, the gluing map is naturally a quasisymmetric homeomorphism of the circle. The main result is that for each value of $K$, every quasisymmetric map is achieved as the gluing map at infinity along some quasicircle. We also prove analogous results in the setting of three-dimensional anti de Sitter geometry. Our results may be viewed as universal versions of the conjectures of Thurston and Mess about prescribing the induced metric on the boundary of the convex core of quasifuchsian hyperbolic manifolds and globally hyperbolic anti de Sitter spacetimes.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.