A. Polyakova, A. Soloveva, P. Peretyagin, M. Presnyakova, V. Vaks, A. V. Kornaukhov
{"title":"低强度亚毫米波和毫米波诱导实验性烧伤适应反应的研究","authors":"A. Polyakova, A. Soloveva, P. Peretyagin, M. Presnyakova, V. Vaks, A. V. Kornaukhov","doi":"10.3390/opt3010004","DOIUrl":null,"url":null,"abstract":"Burns are an actual problem of modern medicine. Oxidative stress, microcirculation, and hemostasis disorders are important links in the pathogenesis of burn disease. It is shown that these processes are significantly influenced by the point effect of low-intensity (LI) electromagnetic radiation (EMR) of the millimeter (MM) and submillimeter (subMM) ranges. However, the final opinion on the advantages of a particular range has not been formed. We have given a comparative assessment of the results of the effects of various frequency-energy parameters of microwaves on the indicators of adaptive reactions in rats under experimental thermal trauma and viscoelastic properties of blood in the case of burn disease.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn\",\"authors\":\"A. Polyakova, A. Soloveva, P. Peretyagin, M. Presnyakova, V. Vaks, A. V. Kornaukhov\",\"doi\":\"10.3390/opt3010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burns are an actual problem of modern medicine. Oxidative stress, microcirculation, and hemostasis disorders are important links in the pathogenesis of burn disease. It is shown that these processes are significantly influenced by the point effect of low-intensity (LI) electromagnetic radiation (EMR) of the millimeter (MM) and submillimeter (subMM) ranges. However, the final opinion on the advantages of a particular range has not been formed. We have given a comparative assessment of the results of the effects of various frequency-energy parameters of microwaves on the indicators of adaptive reactions in rats under experimental thermal trauma and viscoelastic properties of blood in the case of burn disease.\",\"PeriodicalId\":54548,\"journal\":{\"name\":\"Progress in Optics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/opt3010004\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt3010004","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Study of the Effect of Low-Intensity Sub- and Millimeter Waves on the Induction of Adaptation Reactions in Experimental Burn
Burns are an actual problem of modern medicine. Oxidative stress, microcirculation, and hemostasis disorders are important links in the pathogenesis of burn disease. It is shown that these processes are significantly influenced by the point effect of low-intensity (LI) electromagnetic radiation (EMR) of the millimeter (MM) and submillimeter (subMM) ranges. However, the final opinion on the advantages of a particular range has not been formed. We have given a comparative assessment of the results of the effects of various frequency-energy parameters of microwaves on the indicators of adaptive reactions in rats under experimental thermal trauma and viscoelastic properties of blood in the case of burn disease.