基于SYCL的无矩阵共轭梯度核性能分析

I. Baratta, C. Richardson, G. N. Wells
{"title":"基于SYCL的无矩阵共轭梯度核性能分析","authors":"I. Baratta, C. Richardson, G. N. Wells","doi":"10.1145/3529538.3529993","DOIUrl":null,"url":null,"abstract":"We examine the performance of matrix-free SYCL implementations of the conjugate gradient method for solving sparse linear systems of equations. Performance is tested on an NVIDIA A100-80GB device and a dual socket Intel Ice Lake CPU node using different SYCL implementations, and compared to CUDA BLAS (cuBLAS) implementations on the A100 GPU and MKL implementations on the CPU node. All considered kernels in the matrix-free implementation are memory bandwidth limited, and a simple performance model is applied to estimate the asymptotic memory bandwidth and the latency. Our experiments show that in most cases the considered SYCL implementations match the asymptotic performance of the reference implementations. However, for smaller but practically relevant problem sizes latency is observed to have a significant impact on performance. For some cases the SYCL latency is reasonably close to the reference (cuBLAS/MKL) implementation latency, but in other cases it is more than one order of magnitude greater. In particular, SYCL built-in reductions on the GPU and all operations for one of the SYCL implementations on the CPU exhibit high latency, and this latency limits performance at problem sizes that can in cases be representative of full application simulations, and can degrade strong scaling performance.","PeriodicalId":73497,"journal":{"name":"International Workshop on OpenCL","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of matrix-free conjugate gradient kernels using SYCL\",\"authors\":\"I. Baratta, C. Richardson, G. N. Wells\",\"doi\":\"10.1145/3529538.3529993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the performance of matrix-free SYCL implementations of the conjugate gradient method for solving sparse linear systems of equations. Performance is tested on an NVIDIA A100-80GB device and a dual socket Intel Ice Lake CPU node using different SYCL implementations, and compared to CUDA BLAS (cuBLAS) implementations on the A100 GPU and MKL implementations on the CPU node. All considered kernels in the matrix-free implementation are memory bandwidth limited, and a simple performance model is applied to estimate the asymptotic memory bandwidth and the latency. Our experiments show that in most cases the considered SYCL implementations match the asymptotic performance of the reference implementations. However, for smaller but practically relevant problem sizes latency is observed to have a significant impact on performance. For some cases the SYCL latency is reasonably close to the reference (cuBLAS/MKL) implementation latency, but in other cases it is more than one order of magnitude greater. In particular, SYCL built-in reductions on the GPU and all operations for one of the SYCL implementations on the CPU exhibit high latency, and this latency limits performance at problem sizes that can in cases be representative of full application simulations, and can degrade strong scaling performance.\",\"PeriodicalId\":73497,\"journal\":{\"name\":\"International Workshop on OpenCL\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on OpenCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3529538.3529993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529538.3529993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了求解稀疏线性方程组的共轭梯度法的无矩阵SYCL实现的性能。在NVIDIA A100- 80gb设备和双插槽Intel冰湖CPU节点上使用不同的SYCL实现进行性能测试,并与A100 GPU上的CUDA BLAS (cuBLAS)实现和CPU节点上的MKL实现进行比较。在无矩阵实现中,所有考虑的核都是有限的内存带宽,并应用一个简单的性能模型来估计渐近内存带宽和延迟。我们的实验表明,在大多数情况下,考虑的SYCL实现与参考实现的渐近性能相匹配。但是,对于较小但实际相关的问题大小,可以观察到延迟对性能有重大影响。在某些情况下,SYCL延迟与参考(cuBLAS/MKL)实现延迟相当接近,但在其他情况下,它比参考(cuBLAS/MKL)实现延迟大一个数量级以上。特别是,GPU上的SYCL内置缩减和CPU上SYCL实现之一的所有操作都表现出高延迟,这种延迟限制了问题规模的性能,在某些情况下,这些问题规模可以代表完整的应用程序模拟,并且可能降低强大的扩展性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance analysis of matrix-free conjugate gradient kernels using SYCL
We examine the performance of matrix-free SYCL implementations of the conjugate gradient method for solving sparse linear systems of equations. Performance is tested on an NVIDIA A100-80GB device and a dual socket Intel Ice Lake CPU node using different SYCL implementations, and compared to CUDA BLAS (cuBLAS) implementations on the A100 GPU and MKL implementations on the CPU node. All considered kernels in the matrix-free implementation are memory bandwidth limited, and a simple performance model is applied to estimate the asymptotic memory bandwidth and the latency. Our experiments show that in most cases the considered SYCL implementations match the asymptotic performance of the reference implementations. However, for smaller but practically relevant problem sizes latency is observed to have a significant impact on performance. For some cases the SYCL latency is reasonably close to the reference (cuBLAS/MKL) implementation latency, but in other cases it is more than one order of magnitude greater. In particular, SYCL built-in reductions on the GPU and all operations for one of the SYCL implementations on the CPU exhibit high latency, and this latency limits performance at problem sizes that can in cases be representative of full application simulations, and can degrade strong scaling performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Performance Portability of the Procedurally Generated High Energy Physics Event Generator MadGraph Using SYCL Acceleration of Quantum Transport Simulations with OpenCL CodePin: An Instrumentation-Based Debug Tool of SYCLomatic An Efficient Approach to Resolving Stack Overflow of SYCL Kernel on Intel® CPUs Ray Tracer based lidar simulation using SYCL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1