九州海山对导致黑潮大曲流的斜压不稳定发展的影响

Yuki Tanaka, T. Hibiya
{"title":"九州海山对导致黑潮大曲流的斜压不稳定发展的影响","authors":"Yuki Tanaka, T. Hibiya","doi":"10.1175/JPO-D-17-0050.1","DOIUrl":null,"url":null,"abstract":"AbstractThe Kuroshio south of Japan shows bimodal path fluctuations between the large meander (LM) path and the nonlarge meander (NLM) path. The transition from the NLM path to the LM path is triggered by a small meander generated off southwestern Japan. The small meander first propagates eastward (downstream) along the Kuroshio and then rapidly amplifies over Koshu Seamount, located about 200 km south of Japan, leading to the formation of the LM path of the Kuroshio. Although Koshu Seamount is essential for the rapid amplification of the small meander, the underlying physical mechanism is not fully understood. In this study, the role of Koshu Seamount is revisited using a two-layer quasi-geostrophic model that takes into account the effects of bottom topography. Numerical experiments show that the transition from the NLM path to the LM path can be successfully reproduced only when bottom topography mimicking Koshu Seamount is incorporated. In this case, the upper-layer meander trough is rapidly amplified...","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effects of Koshu Seamount on the Development of Baroclinic Instability Leading to the Kuroshio Large Meander\",\"authors\":\"Yuki Tanaka, T. Hibiya\",\"doi\":\"10.1175/JPO-D-17-0050.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe Kuroshio south of Japan shows bimodal path fluctuations between the large meander (LM) path and the nonlarge meander (NLM) path. The transition from the NLM path to the LM path is triggered by a small meander generated off southwestern Japan. The small meander first propagates eastward (downstream) along the Kuroshio and then rapidly amplifies over Koshu Seamount, located about 200 km south of Japan, leading to the formation of the LM path of the Kuroshio. Although Koshu Seamount is essential for the rapid amplification of the small meander, the underlying physical mechanism is not fully understood. In this study, the role of Koshu Seamount is revisited using a two-layer quasi-geostrophic model that takes into account the effects of bottom topography. Numerical experiments show that the transition from the NLM path to the LM path can be successfully reproduced only when bottom topography mimicking Koshu Seamount is incorporated. In this case, the upper-layer meander trough is rapidly amplified...\",\"PeriodicalId\":14836,\"journal\":{\"name\":\"Japan Geoscience Union\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Geoscience Union\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/JPO-D-17-0050.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JPO-D-17-0050.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要日本南部黑潮呈现出大曲流(LM)路径与非大曲流(NLM)路径的双峰起伏。从南纬向南纬的转变是由日本西南部产生的一个小曲流触发的。小曲流首先沿着黑潮向东(下游)传播,然后迅速扩大到位于日本以南约200公里的Koshu海山,形成黑潮的LM路径。虽然古州海山对小曲流的快速扩大是必不可少的,但其潜在的物理机制尚不完全清楚。在这项研究中,使用考虑底部地形影响的两层准地转模型重新审视了Koshu海山的作用。数值实验结果表明,只有结合模拟古州海山的海底地形,才能成功地再现从低海拔路径到低海拔路径的过渡。在这种情况下,上层蜿蜒槽被迅速放大…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Koshu Seamount on the Development of Baroclinic Instability Leading to the Kuroshio Large Meander
AbstractThe Kuroshio south of Japan shows bimodal path fluctuations between the large meander (LM) path and the nonlarge meander (NLM) path. The transition from the NLM path to the LM path is triggered by a small meander generated off southwestern Japan. The small meander first propagates eastward (downstream) along the Kuroshio and then rapidly amplifies over Koshu Seamount, located about 200 km south of Japan, leading to the formation of the LM path of the Kuroshio. Although Koshu Seamount is essential for the rapid amplification of the small meander, the underlying physical mechanism is not fully understood. In this study, the role of Koshu Seamount is revisited using a two-layer quasi-geostrophic model that takes into account the effects of bottom topography. Numerical experiments show that the transition from the NLM path to the LM path can be successfully reproduced only when bottom topography mimicking Koshu Seamount is incorporated. In this case, the upper-layer meander trough is rapidly amplified...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Landform and Paleoseismic Activity of the Northernmost Sumatran Fault, Aceh Province, Indonesia Pressure-to-depth conversion models for metamorphic rocks: derivation and applications Standardized Variability Index (SVI): A multiscale index to assess the variability of precipitation Overpressured underthrust sediment in the Nankai Trough forearc inferred from high-frequency receiver function inversion Simple Topographic Parameter for Along-trench Friction Distribution of Shallow Megathrust Fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1