高总溶解固形物采出水的预处理

Damir Kaishentayev, B. Hascakir
{"title":"高总溶解固形物采出水的预处理","authors":"Damir Kaishentayev, B. Hascakir","doi":"10.2118/206371-ms","DOIUrl":null,"url":null,"abstract":"\n There are mainly two types of solids in the oil field waters; Suspended Solids (SS) and Total Dissolved Solids (TDS). While it is easy to remove SS from water, removal of TDS requires the application of advance filtration techniques such as reverse osmosis or ultra-filtration. Because these techniques cannot handle high volumes of the oilfield waters with high TDS content, produced waters originated from hydraulic fracturing activities cannot be treated by using these advance technologies. Thus, in this study we concentrated on the pretreatment of these waters.\n We investigated the feasibility of the Coagulation, Flocculation, and Sedimentation (CFS) process as pretreatment method to reduce mainly SS in Produced Water (PW) samples. We collected samples from 14 different wells in the Permian Basin. First, we characterized the water samples in terms of pH, SS, TDS, Zeta potential (ZP), Turbidity, Organic matter presence and different Ion concentration. We tested varying doses of several organic and inorganic chemicals, and on treated water samples we measured pH, TDS, SS, Turbidity, ZP and Ions. Then, we compared obtained results with the initial PW characterizations to determine the best performing chemicals and their optimal dosage (OD) to remove contaminants effectively.\n The cation and anion analyses on the initial water samples showed that TDS is mainly caused by the dissolved sodium and chlorine ions. ZP results indicated that SS are mainly negatively charged particles with absolute values around 20 mV on average. Among the tested coagulants, the best SS reduction was achieved through the addition of ferric sulfate, which helped to reduce the SS around 86%. To further lessen SS, we tested several organic flocculants in which the reduction was improved slightly more.\n We concluded while high TDS in the Permian basin does not implement a substantial risk for the reduction of fracture conductivity, SS is posing a high risk. Our study showed, depending on components of the initial PW, reuse of the pretreated water for fracturing may minimize fracture conductivity damage.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pretreatment of Produced Waters Containing High Total Dissolved Solids\",\"authors\":\"Damir Kaishentayev, B. Hascakir\",\"doi\":\"10.2118/206371-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are mainly two types of solids in the oil field waters; Suspended Solids (SS) and Total Dissolved Solids (TDS). While it is easy to remove SS from water, removal of TDS requires the application of advance filtration techniques such as reverse osmosis or ultra-filtration. Because these techniques cannot handle high volumes of the oilfield waters with high TDS content, produced waters originated from hydraulic fracturing activities cannot be treated by using these advance technologies. Thus, in this study we concentrated on the pretreatment of these waters.\\n We investigated the feasibility of the Coagulation, Flocculation, and Sedimentation (CFS) process as pretreatment method to reduce mainly SS in Produced Water (PW) samples. We collected samples from 14 different wells in the Permian Basin. First, we characterized the water samples in terms of pH, SS, TDS, Zeta potential (ZP), Turbidity, Organic matter presence and different Ion concentration. We tested varying doses of several organic and inorganic chemicals, and on treated water samples we measured pH, TDS, SS, Turbidity, ZP and Ions. Then, we compared obtained results with the initial PW characterizations to determine the best performing chemicals and their optimal dosage (OD) to remove contaminants effectively.\\n The cation and anion analyses on the initial water samples showed that TDS is mainly caused by the dissolved sodium and chlorine ions. ZP results indicated that SS are mainly negatively charged particles with absolute values around 20 mV on average. Among the tested coagulants, the best SS reduction was achieved through the addition of ferric sulfate, which helped to reduce the SS around 86%. To further lessen SS, we tested several organic flocculants in which the reduction was improved slightly more.\\n We concluded while high TDS in the Permian basin does not implement a substantial risk for the reduction of fracture conductivity, SS is posing a high risk. Our study showed, depending on components of the initial PW, reuse of the pretreated water for fracturing may minimize fracture conductivity damage.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206371-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206371-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

油田水体中的固体主要有两种类型;悬浮物(SS)和总溶解物(TDS)。虽然从水中去除SS很容易,但去除TDS需要应用先进的过滤技术,如反渗透或超过滤。由于这些技术无法处理大量TDS含量高的油田水,因此水力压裂产生的产出水无法使用这些先进技术进行处理。因此,在本研究中,我们主要研究这些水的预处理。研究了混凝-絮凝-沉淀(CFS)预处理方法降低采出水(PW)样品中主要SS的可行性。我们从二叠纪盆地的14口不同的井中收集了样本。首先,我们从pH, SS, TDS, Zeta电位(ZP),浊度,有机物存在和不同离子浓度等方面对水样进行了表征。我们测试了几种不同剂量的有机和无机化学物质,并在处理过的水样上测量了pH值、TDS、SS、浊度、ZP和离子。然后,我们将获得的结果与初始PW表征进行比较,以确定最佳性能的化学品及其有效去除污染物的最佳剂量(OD)。初始水样的阳离子和阴离子分析表明,TDS主要是由溶解的钠离子和氯离子引起的。ZP结果表明,SS主要为负电荷粒子,其绝对值平均在20 mV左右。在所测试的混凝剂中,添加硫酸铁对SS的降低效果最好,降低SS约86%。为了进一步降低SS,我们测试了几种有机絮凝剂,它们的减除率略有提高。我们得出的结论是,虽然二叠纪盆地的高TDS并不会对裂缝导流能力的降低造成实质性的风险,但SS却会带来很高的风险。我们的研究表明,根据初始PW的组成,在压裂中重复使用预处理水可以最大限度地减少裂缝导流性的损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pretreatment of Produced Waters Containing High Total Dissolved Solids
There are mainly two types of solids in the oil field waters; Suspended Solids (SS) and Total Dissolved Solids (TDS). While it is easy to remove SS from water, removal of TDS requires the application of advance filtration techniques such as reverse osmosis or ultra-filtration. Because these techniques cannot handle high volumes of the oilfield waters with high TDS content, produced waters originated from hydraulic fracturing activities cannot be treated by using these advance technologies. Thus, in this study we concentrated on the pretreatment of these waters. We investigated the feasibility of the Coagulation, Flocculation, and Sedimentation (CFS) process as pretreatment method to reduce mainly SS in Produced Water (PW) samples. We collected samples from 14 different wells in the Permian Basin. First, we characterized the water samples in terms of pH, SS, TDS, Zeta potential (ZP), Turbidity, Organic matter presence and different Ion concentration. We tested varying doses of several organic and inorganic chemicals, and on treated water samples we measured pH, TDS, SS, Turbidity, ZP and Ions. Then, we compared obtained results with the initial PW characterizations to determine the best performing chemicals and their optimal dosage (OD) to remove contaminants effectively. The cation and anion analyses on the initial water samples showed that TDS is mainly caused by the dissolved sodium and chlorine ions. ZP results indicated that SS are mainly negatively charged particles with absolute values around 20 mV on average. Among the tested coagulants, the best SS reduction was achieved through the addition of ferric sulfate, which helped to reduce the SS around 86%. To further lessen SS, we tested several organic flocculants in which the reduction was improved slightly more. We concluded while high TDS in the Permian basin does not implement a substantial risk for the reduction of fracture conductivity, SS is posing a high risk. Our study showed, depending on components of the initial PW, reuse of the pretreated water for fracturing may minimize fracture conductivity damage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of Wettability Alteration from Alkali/Nanoparticles/Polymer Flooding - Integrating Data of Imbibition, Contact Angle and Interfacial-Tension to Screen Injection Agents Benchmarking and Field-Testing of the Distributed Quasi-Newton Derivative-Free Optimization Method for Field Development Optimization Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test Four Simple Questions: Decision-Centered Risk and Project Management Gas Migration in Wellbores During Pressurized Mud Cap Drilling PMCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1