背照超快激光处理聚合物的表面附着力

D. Kallepalli, Alan T. K. Godfrey, Jesse Ratté, A. Staudte, Chunmei Zhang, P. Corkum
{"title":"背照超快激光处理聚合物的表面附着力","authors":"D. Kallepalli, Alan T. K. Godfrey, Jesse Ratté, A. Staudte, Chunmei Zhang, P. Corkum","doi":"10.1103/PhysRevMaterials.5.045201","DOIUrl":null,"url":null,"abstract":"We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the surface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface adhesion of back-illuminated ultrafast laser-treated polymers\",\"authors\":\"D. Kallepalli, Alan T. K. Godfrey, Jesse Ratté, A. Staudte, Chunmei Zhang, P. Corkum\",\"doi\":\"10.1103/PhysRevMaterials.5.045201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the surface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevMaterials.5.045201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevMaterials.5.045201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了当在玻璃基板上的聚合物薄膜在背光几何中被超快激光脉冲处理时,表面润湿性降低。我们建议通过衬底的反向照明限制聚合物薄膜表面下的化学变化,使表面起泡,但化学完整。为了证实这一假设,我们测量了用聚焦离子束观察聚合物时的相位差。我们在聚合物-石英界面上观察到一个空洞,这是由超快激光诱导等离子体膨胀引起的。一层修饰的聚合物层包围着空隙,但除此之外,薄膜似乎没有修饰。我们还使用x射线光电子能谱来确认表面没有化学变化。当图案与部分重叠的水泡,我们的聚合物表面显示出增加的疏水性。背照表面疏水性的增加只能由形态变化引起。这与由前照射几何形状引起的聚合物表面的化学和形态变化形成对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface adhesion of back-illuminated ultrafast laser-treated polymers
We report a decreased surface wettability when polymer films on a glass substrate are treated by ultra-fast laser pulses in a back-illumination geometry. We propose that back-illumination through the substrate confines chemical changes beneath the surface of polymer films, leaving the surface blistered but chemically intact. To confirm this hypothesis, we measure the phase contrast of the polymer when observed with a focused ion beam. We observe a void at the polymer-quartz interface that results from the expansion of an ultrafast laser-induced plasma. A modified polymer layer surrounds the void, but otherwise the film seems unmodified. We also use X-ray photoelectron spectroscopy to confirm that there is no chemical change to the surface. When patterned with partially overlapping blisters, our polymer surface shows increased hydrophobicity. The increased hydrophobicity of back-illuminated surfaces can only result from the morphological change. This contrasts with the combined chemical and morphological changes of the polymer surface caused by a front-illumination geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1