平板玻璃揭示了相机校准的什么?

Qian Zheng, Jinnan Chen, Zhangchi Lu, Boxin Shi, Xudong Jiang, Kim-Hui Yap, Ling-yu Duan, A. Kot
{"title":"平板玻璃揭示了相机校准的什么?","authors":"Qian Zheng, Jinnan Chen, Zhangchi Lu, Boxin Shi, Xudong Jiang, Kim-Hui Yap, Ling-yu Duan, A. Kot","doi":"10.1109/cvpr42600.2020.00309","DOIUrl":null,"url":null,"abstract":"This paper aims to calibrate the orientation of glass and the field of view of the camera from a single reflection-contaminated image. We show how a reflective amplitude coefficient map can be used as a calibration cue. Different from existing methods, the proposed solution is free from image contents. To reduce the impact of a noisy calibration cue estimated from a reflection-contaminated image, we propose two strategies: an optimization-based method that imposes part of though reliable entries on the map and a learning-based method that fully exploits all entries. We collect a dataset containing 320 samples as well as their camera parameters for evaluation. We demonstrate that our method not only facilitates a general single image camera calibration method that leverages image contents but also contributes to improving the performance of single image reflection removal. Furthermore, we show our byproduct output helps alleviate the ill-posed problem of estimating the panorama from a single image.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"254 1","pages":"3019-3029"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"What Does Plate Glass Reveal About Camera Calibration?\",\"authors\":\"Qian Zheng, Jinnan Chen, Zhangchi Lu, Boxin Shi, Xudong Jiang, Kim-Hui Yap, Ling-yu Duan, A. Kot\",\"doi\":\"10.1109/cvpr42600.2020.00309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to calibrate the orientation of glass and the field of view of the camera from a single reflection-contaminated image. We show how a reflective amplitude coefficient map can be used as a calibration cue. Different from existing methods, the proposed solution is free from image contents. To reduce the impact of a noisy calibration cue estimated from a reflection-contaminated image, we propose two strategies: an optimization-based method that imposes part of though reliable entries on the map and a learning-based method that fully exploits all entries. We collect a dataset containing 320 samples as well as their camera parameters for evaluation. We demonstrate that our method not only facilitates a general single image camera calibration method that leverages image contents but also contributes to improving the performance of single image reflection removal. Furthermore, we show our byproduct output helps alleviate the ill-posed problem of estimating the panorama from a single image.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"254 1\",\"pages\":\"3019-3029\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文的目的是根据单幅反射污染图像校准玻璃的方向和相机的视场。我们展示了如何将反射振幅系数图用作校准提示。与现有方法不同的是,该方法不受图像内容的影响。为了减少从反射污染图像中估计的噪声校准线索的影响,我们提出了两种策略:一种基于优化的方法,将部分可靠条目强加到地图上,另一种基于学习的方法,充分利用所有条目。我们收集了一个包含320个样本及其相机参数的数据集进行评估。我们证明,我们的方法不仅有利于利用图像内容的一般单图像相机校准方法,而且有助于提高单图像反射去除的性能。此外,我们表明我们的副产物输出有助于缓解从单个图像估计全景的不适定问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What Does Plate Glass Reveal About Camera Calibration?
This paper aims to calibrate the orientation of glass and the field of view of the camera from a single reflection-contaminated image. We show how a reflective amplitude coefficient map can be used as a calibration cue. Different from existing methods, the proposed solution is free from image contents. To reduce the impact of a noisy calibration cue estimated from a reflection-contaminated image, we propose two strategies: an optimization-based method that imposes part of though reliable entries on the map and a learning-based method that fully exploits all entries. We collect a dataset containing 320 samples as well as their camera parameters for evaluation. We demonstrate that our method not only facilitates a general single image camera calibration method that leverages image contents but also contributes to improving the performance of single image reflection removal. Furthermore, we show our byproduct output helps alleviate the ill-posed problem of estimating the panorama from a single image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1