基于wi - wmd的API推荐

Pub Date : 2021-10-01 DOI:10.4018/ijcini.20211001.oa16
Wanzhi Wen, Shiqiang Wang, Bingqing Ye, XingYu Zhu, Yitao Hu, Xiaohong Lu, Bin Zhang
{"title":"基于wi - wmd的API推荐","authors":"Wanzhi Wen, Shiqiang Wang, Bingqing Ye, XingYu Zhu, Yitao Hu, Xiaohong Lu, Bin Zhang","doi":"10.4018/ijcini.20211001.oa16","DOIUrl":null,"url":null,"abstract":"Improving software development efficiency based on existing APIs is one of the hot researches in software engineering. Understanding and learning so many APIs in large software libraries is not easy and software developers prefer to provide only requirements descriptions to get the right API. In order to solve this problem, this paper proposes an API recommendation method based on WII-WMD, an improved similarity calculation algorithm. This method firstly structures the text, and then fully mines the semantic information in the text. Finally, it calculates the similarity between the user's query problem and the information described in the API document. The experiment results show that the API recommendation based on WII-WMD can improve the efficiency of the API recommendation system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"API Recommendation Based on WII-WMD\",\"authors\":\"Wanzhi Wen, Shiqiang Wang, Bingqing Ye, XingYu Zhu, Yitao Hu, Xiaohong Lu, Bin Zhang\",\"doi\":\"10.4018/ijcini.20211001.oa16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving software development efficiency based on existing APIs is one of the hot researches in software engineering. Understanding and learning so many APIs in large software libraries is not easy and software developers prefer to provide only requirements descriptions to get the right API. In order to solve this problem, this paper proposes an API recommendation method based on WII-WMD, an improved similarity calculation algorithm. This method firstly structures the text, and then fully mines the semantic information in the text. Finally, it calculates the similarity between the user's query problem and the information described in the API document. The experiment results show that the API recommendation based on WII-WMD can improve the efficiency of the API recommendation system.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.20211001.oa16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于现有api提高软件开发效率是软件工程领域的研究热点之一。理解和学习大型软件库中的这么多API并不容易,软件开发人员更愿意只提供需求描述来获得正确的API。为了解决这一问题,本文提出了一种基于改进的相似度计算算法WII-WMD的API推荐方法。该方法首先对文本进行结构化,然后充分挖掘文本中的语义信息。最后,计算用户查询问题与API文档中描述的信息之间的相似度。实验结果表明,基于wi - wmd的API推荐可以提高API推荐系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
API Recommendation Based on WII-WMD
Improving software development efficiency based on existing APIs is one of the hot researches in software engineering. Understanding and learning so many APIs in large software libraries is not easy and software developers prefer to provide only requirements descriptions to get the right API. In order to solve this problem, this paper proposes an API recommendation method based on WII-WMD, an improved similarity calculation algorithm. This method firstly structures the text, and then fully mines the semantic information in the text. Finally, it calculates the similarity between the user's query problem and the information described in the API document. The experiment results show that the API recommendation based on WII-WMD can improve the efficiency of the API recommendation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1