基于规则的知识图嵌入数据增强

Guangyao Li , Zequn Sun , Lei Qian , Qiang Guo , Wei Hu
{"title":"基于规则的知识图嵌入数据增强","authors":"Guangyao Li ,&nbsp;Zequn Sun ,&nbsp;Lei Qian ,&nbsp;Qiang Guo ,&nbsp;Wei Hu","doi":"10.1016/j.aiopen.2021.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Knowledge graph (KG) embedding models suffer from the incompleteness issue of observed facts. Different from existing solutions that incorporate additional information or employ expressive and complex embedding techniques, we propose to augment KGs by iteratively mining logical rules from the observed facts and then using the rules to generate new relational triples. We incrementally train KG embeddings with the coming of new augmented triples, and leverage the embeddings to validate these new triples. To guarantee the quality of the augmented data, we filter out the noisy triples based on a propagation mechanism during the validation. The mined rules and rule groundings are human-understandable, and can make the augmentation procedure reliable. Our KG augmentation framework is applicable to any KG embedding models with no need to modify their embedding techniques. Our experiments on two popular embedding-based tasks (i.e., entity alignment and link prediction) show that the proposed framework can bring significant improvement to existing KG embedding models on most benchmark datasets.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"2 ","pages":"Pages 186-196"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666651021000267/pdfft?md5=46899106b76601dcb62a0d1c184db35c&pid=1-s2.0-S2666651021000267-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Rule-based data augmentation for knowledge graph embedding\",\"authors\":\"Guangyao Li ,&nbsp;Zequn Sun ,&nbsp;Lei Qian ,&nbsp;Qiang Guo ,&nbsp;Wei Hu\",\"doi\":\"10.1016/j.aiopen.2021.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Knowledge graph (KG) embedding models suffer from the incompleteness issue of observed facts. Different from existing solutions that incorporate additional information or employ expressive and complex embedding techniques, we propose to augment KGs by iteratively mining logical rules from the observed facts and then using the rules to generate new relational triples. We incrementally train KG embeddings with the coming of new augmented triples, and leverage the embeddings to validate these new triples. To guarantee the quality of the augmented data, we filter out the noisy triples based on a propagation mechanism during the validation. The mined rules and rule groundings are human-understandable, and can make the augmentation procedure reliable. Our KG augmentation framework is applicable to any KG embedding models with no need to modify their embedding techniques. Our experiments on two popular embedding-based tasks (i.e., entity alignment and link prediction) show that the proposed framework can bring significant improvement to existing KG embedding models on most benchmark datasets.</p></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"2 \",\"pages\":\"Pages 186-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666651021000267/pdfft?md5=46899106b76601dcb62a0d1c184db35c&pid=1-s2.0-S2666651021000267-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651021000267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651021000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

知识图(KG)嵌入模型存在观察事实不完备的问题。与现有的包含额外信息或使用表达性和复杂嵌入技术的解决方案不同,我们建议通过从观察到的事实中迭代挖掘逻辑规则,然后使用规则生成新的关系三元组来增强KGs。随着新的增广三元组的出现,我们逐渐训练KG嵌入,并利用嵌入来验证这些新的三元组。为了保证增强数据的质量,我们在验证过程中基于传播机制过滤掉噪声三元组。挖掘的规则和规则基础是人类可以理解的,并且可以使增强过程可靠。我们的KG增强框架适用于任何KG嵌入模型,无需修改其嵌入技术。我们在两个流行的基于嵌入的任务(即实体对齐和链接预测)上的实验表明,所提出的框架可以在大多数基准数据集上对现有的KG嵌入模型进行显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rule-based data augmentation for knowledge graph embedding

Knowledge graph (KG) embedding models suffer from the incompleteness issue of observed facts. Different from existing solutions that incorporate additional information or employ expressive and complex embedding techniques, we propose to augment KGs by iteratively mining logical rules from the observed facts and then using the rules to generate new relational triples. We incrementally train KG embeddings with the coming of new augmented triples, and leverage the embeddings to validate these new triples. To guarantee the quality of the augmented data, we filter out the noisy triples based on a propagation mechanism during the validation. The mined rules and rule groundings are human-understandable, and can make the augmentation procedure reliable. Our KG augmentation framework is applicable to any KG embedding models with no need to modify their embedding techniques. Our experiments on two popular embedding-based tasks (i.e., entity alignment and link prediction) show that the proposed framework can bring significant improvement to existing KG embedding models on most benchmark datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
期刊最新文献
GPT understands, too Adaptive negative representations for graph contrastive learning PM2.5 forecasting under distribution shift: A graph learning approach Enhancing neural network classification using fractional-order activation functions CPT: Colorful Prompt Tuning for pre-trained vision-language models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1