印度尼西亚Sukabumi县手工和小规模金矿选定食用植物和土壤中的汞污染

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES Makara Journal of Science Pub Date : 2021-12-30 DOI:10.7454/mss.v25i4.1280
G. S. Saragih, Ely Rahmi Tapriziah, Y. Syofyan, S. Masitoh, Y. S. H. Pandiangan
{"title":"印度尼西亚Sukabumi县手工和小规模金矿选定食用植物和土壤中的汞污染","authors":"G. S. Saragih, Ely Rahmi Tapriziah, Y. Syofyan, S. Masitoh, Y. S. H. Pandiangan","doi":"10.7454/mss.v25i4.1280","DOIUrl":null,"url":null,"abstract":"Artisanal and small-scale gold mining (ASGM) activities often pollute soil, water, and air, thereby achieving widespread proliferation, and contaminating the surrounding biota including plants. Mercury contamination on agricultural land around ASGM areas has been widely reported. This study aims to determine the total mercury contamination in plants and soil around active ASGM sites in Sukabumi Regency, Indonesia, namely, Waluran, Lengkong, and Ciemas Districts. Total mercury (Hg) content was measured from 27 plant samples (including cassava [Manihot utilisima], rice [Oryza sativa], and papaya [Carica papaya]), 7 rhizosphere soil samples, and 7 non-rhizosphere soil samples. Data were analyzed using Kruskal–Wallis test. Results showed no significant difference in total mercury concentrations among locations or plant parts, between rhizosphere and non-rhizosphere soils (p > 0.05), and among cassava plant parts, papaya, and rice. The highest mercury level was found in cassava (0.33–43.27 ppm). Mercury contamination in rice and papaya was relatively low at 0.03– 1.22 and 0.06–5.11 ppm, respectively. According to the Regulation of the Head of BPOM of the Republic of Indonesia Number 23 of 2017 concerning the Maximum Limit of Heavy Metal Contamination in Processed Food, 0.03 ppm is the maximum limit of mercury contamination in fruits, vegetables, and cereals. Therefore, all plant samples around the ASGM sites have exceeded the maximum mercury contamination and thus are not suitable for consumption.","PeriodicalId":18042,"journal":{"name":"Makara Journal of Science","volume":"19 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mercury Contamination in Selected Edible Plants and Soil from Artisanal and Small-scale Gold Mining in Sukabumi Regency, Indonesia\",\"authors\":\"G. S. Saragih, Ely Rahmi Tapriziah, Y. Syofyan, S. Masitoh, Y. S. H. Pandiangan\",\"doi\":\"10.7454/mss.v25i4.1280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artisanal and small-scale gold mining (ASGM) activities often pollute soil, water, and air, thereby achieving widespread proliferation, and contaminating the surrounding biota including plants. Mercury contamination on agricultural land around ASGM areas has been widely reported. This study aims to determine the total mercury contamination in plants and soil around active ASGM sites in Sukabumi Regency, Indonesia, namely, Waluran, Lengkong, and Ciemas Districts. Total mercury (Hg) content was measured from 27 plant samples (including cassava [Manihot utilisima], rice [Oryza sativa], and papaya [Carica papaya]), 7 rhizosphere soil samples, and 7 non-rhizosphere soil samples. Data were analyzed using Kruskal–Wallis test. Results showed no significant difference in total mercury concentrations among locations or plant parts, between rhizosphere and non-rhizosphere soils (p > 0.05), and among cassava plant parts, papaya, and rice. The highest mercury level was found in cassava (0.33–43.27 ppm). Mercury contamination in rice and papaya was relatively low at 0.03– 1.22 and 0.06–5.11 ppm, respectively. According to the Regulation of the Head of BPOM of the Republic of Indonesia Number 23 of 2017 concerning the Maximum Limit of Heavy Metal Contamination in Processed Food, 0.03 ppm is the maximum limit of mercury contamination in fruits, vegetables, and cereals. Therefore, all plant samples around the ASGM sites have exceeded the maximum mercury contamination and thus are not suitable for consumption.\",\"PeriodicalId\":18042,\"journal\":{\"name\":\"Makara Journal of Science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Makara Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7454/mss.v25i4.1280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/mss.v25i4.1280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

手工和小规模金矿开采(ASGM)活动经常污染土壤、水和空气,从而实现广泛扩散,并污染周围的生物群,包括植物。ASGM地区周边农业用地汞污染已被广泛报道。本研究旨在确定印度尼西亚Sukabumi县(即Waluran、Lengkong和Ciemas地区)ASGM活跃场地周围植物和土壤中的总汞污染。测定了27个植物样品(包括木薯[Manihot utilisima]、水稻[Oryza sativa]和木瓜[Carica papaya])、7个根际土壤样品和7个非根际土壤样品的总汞(Hg)含量。数据分析采用Kruskal-Wallis检验。结果表明,总汞浓度在不同地点、不同植物部位、根际土壤与非根际土壤之间以及木薯、木瓜和水稻之间均无显著差异(p > 0.05)。木薯的汞含量最高(0.33-43.27 ppm)。水稻和木瓜的汞污染相对较低,分别为0.03 ~ 1.22 ppm和0.06 ~ 5.11 ppm。根据印度尼西亚共和国BPOM负责人关于加工食品中重金属污染最高限量的2017年第23号条例,0.03 ppm是水果、蔬菜和谷物中汞污染的最高限量。因此,ASGM场址周围的所有植物样本均已超过最高汞污染水平,因此不适合食用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mercury Contamination in Selected Edible Plants and Soil from Artisanal and Small-scale Gold Mining in Sukabumi Regency, Indonesia
Artisanal and small-scale gold mining (ASGM) activities often pollute soil, water, and air, thereby achieving widespread proliferation, and contaminating the surrounding biota including plants. Mercury contamination on agricultural land around ASGM areas has been widely reported. This study aims to determine the total mercury contamination in plants and soil around active ASGM sites in Sukabumi Regency, Indonesia, namely, Waluran, Lengkong, and Ciemas Districts. Total mercury (Hg) content was measured from 27 plant samples (including cassava [Manihot utilisima], rice [Oryza sativa], and papaya [Carica papaya]), 7 rhizosphere soil samples, and 7 non-rhizosphere soil samples. Data were analyzed using Kruskal–Wallis test. Results showed no significant difference in total mercury concentrations among locations or plant parts, between rhizosphere and non-rhizosphere soils (p > 0.05), and among cassava plant parts, papaya, and rice. The highest mercury level was found in cassava (0.33–43.27 ppm). Mercury contamination in rice and papaya was relatively low at 0.03– 1.22 and 0.06–5.11 ppm, respectively. According to the Regulation of the Head of BPOM of the Republic of Indonesia Number 23 of 2017 concerning the Maximum Limit of Heavy Metal Contamination in Processed Food, 0.03 ppm is the maximum limit of mercury contamination in fruits, vegetables, and cereals. Therefore, all plant samples around the ASGM sites have exceeded the maximum mercury contamination and thus are not suitable for consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Makara Journal of Science
Makara Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.30
自引率
20.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Assessment of Seasonal Variation in Heavy Metal Status of a Lotic Ecosystem in Federal Capital Territory, Abuja, North Central Nigeria An Inkjet-printed Graphene Oxide–poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) Electrode for Nitrite Detection in Water Enzymatic Screening and Genotypic Characterization of Thermophilic Bacteria from the Hot Springs of Sarawak, Malaysia Using In silico Tools to Analyze the 5ʹ Untranslated Regions of the Alcohol Dehydrogenase Gene from Arabidopsis thaliana and Omega Sequence Electro-optical Effect of 4-n-alkyl-sulfanyl-4' isothiocyanate-biphenyl Liquid Crystal Homologous Series Under Terahertz Frequency: A Theoretical Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1