差异化产品市场中的非参数需求估计

Giovanni Compiani
{"title":"差异化产品市场中的非参数需求估计","authors":"Giovanni Compiani","doi":"10.2139/ssrn.3134152","DOIUrl":null,"url":null,"abstract":"I develop and apply a nonparametric approach to estimate demand in differentiated products markets. Estimating demand flexibly is key to addressing many questions in economics that hinge on the shape - and notably the curvature - of market demand functions. My approach applies to standard discrete choice settings, but accommodates a broader range of consumer behaviors and preferences, including complementarities across goods, consumer inattention, and consumer loss aversion. Further, no distributional assumptions are made on the unobservables and only limited functional form restrictions are imposed. Using California grocery store data, I apply my approach to perform two counterfactual exercises: quantifying the pass-through of a tax, and assessing how much the multi-product nature of sellers contributes to markups. In both cases, I find that estimating demand flexibly has a significant impact on the results relative to a standard random coefficients discrete choice model, and I highlight how the outcomes relate to the estimated shape of the demand functions.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Nonparametric Demand Estimation in Differentiated Products Markets\",\"authors\":\"Giovanni Compiani\",\"doi\":\"10.2139/ssrn.3134152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I develop and apply a nonparametric approach to estimate demand in differentiated products markets. Estimating demand flexibly is key to addressing many questions in economics that hinge on the shape - and notably the curvature - of market demand functions. My approach applies to standard discrete choice settings, but accommodates a broader range of consumer behaviors and preferences, including complementarities across goods, consumer inattention, and consumer loss aversion. Further, no distributional assumptions are made on the unobservables and only limited functional form restrictions are imposed. Using California grocery store data, I apply my approach to perform two counterfactual exercises: quantifying the pass-through of a tax, and assessing how much the multi-product nature of sellers contributes to markups. In both cases, I find that estimating demand flexibly has a significant impact on the results relative to a standard random coefficients discrete choice model, and I highlight how the outcomes relate to the estimated shape of the demand functions.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3134152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3134152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我开发并应用了一种非参数方法来估计差异化产品市场的需求。灵活估计需求是解决许多经济学问题的关键,这些问题取决于市场需求函数的形状,尤其是曲率。我的方法适用于标准的离散选择设置,但适用于更广泛的消费者行为和偏好,包括商品的互补性、消费者的不注意和消费者的损失厌恶。此外,没有对不可观测的分布假设,只施加有限的功能形式限制。利用加州杂货店的数据,我运用我的方法进行了两个反事实的练习:量化税收的传递,以及评估卖家的多产品性质对加价的贡献。在这两种情况下,我发现灵活估计需求对相对于标准随机系数离散选择模型的结果有显著影响,并且我强调了结果如何与需求函数的估计形状相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric Demand Estimation in Differentiated Products Markets
I develop and apply a nonparametric approach to estimate demand in differentiated products markets. Estimating demand flexibly is key to addressing many questions in economics that hinge on the shape - and notably the curvature - of market demand functions. My approach applies to standard discrete choice settings, but accommodates a broader range of consumer behaviors and preferences, including complementarities across goods, consumer inattention, and consumer loss aversion. Further, no distributional assumptions are made on the unobservables and only limited functional form restrictions are imposed. Using California grocery store data, I apply my approach to perform two counterfactual exercises: quantifying the pass-through of a tax, and assessing how much the multi-product nature of sellers contributes to markups. In both cases, I find that estimating demand flexibly has a significant impact on the results relative to a standard random coefficients discrete choice model, and I highlight how the outcomes relate to the estimated shape of the demand functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Estimation of Pricing Kernels and Market-Implied Densities Futures-Trading Activity and Jump Risk: Evidence From the Bitcoin Market Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions Frequency Dependent Risk Spatial Heterogeneity in the Borrowers' Mortgage Termination Decision – a Nonparametric Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1