基于预测误差建模的H.264帧内编码

Xun Cai, J. Lim
{"title":"基于预测误差建模的H.264帧内编码","authors":"Xun Cai, J. Lim","doi":"10.1109/ICIP.2016.7532785","DOIUrl":null,"url":null,"abstract":"In intra video coding, intra frames are predicted with intra prediction and the prediction residual signal is encoded. In many transform-based video coding systems, intra prediction residuals are encoded with transforms. For example, the Discrete Cosine Transform (DCT) and the Asymmetric Discrete Sine Transform (ADST) are used for intra prediction residuals in many coding systems. In the recent work, a set of transforms based on prediction inaccuracy modeling (PIM) has been proposed. These transforms are developed based on the observation that much of the residual non-stationarity is due to the use of an inaccurate prediction parameter. These transforms are shown to be effective for non-stationarity that arises in directional intra prediction residuals. In this paper, we implement the transforms based on prediction inaccuracy modeling on the H.264 intra coding system. The proposed transform is used in hybrid with the ADST. We compare the performance of the hybrid transform with the ADST and show that a significant bit-rate reduction is obtained with the proposed transform.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"16 1","pages":"2380-2384"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"H.264 intra coding with transforms based on prediction inaccuracy modeling\",\"authors\":\"Xun Cai, J. Lim\",\"doi\":\"10.1109/ICIP.2016.7532785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In intra video coding, intra frames are predicted with intra prediction and the prediction residual signal is encoded. In many transform-based video coding systems, intra prediction residuals are encoded with transforms. For example, the Discrete Cosine Transform (DCT) and the Asymmetric Discrete Sine Transform (ADST) are used for intra prediction residuals in many coding systems. In the recent work, a set of transforms based on prediction inaccuracy modeling (PIM) has been proposed. These transforms are developed based on the observation that much of the residual non-stationarity is due to the use of an inaccurate prediction parameter. These transforms are shown to be effective for non-stationarity that arises in directional intra prediction residuals. In this paper, we implement the transforms based on prediction inaccuracy modeling on the H.264 intra coding system. The proposed transform is used in hybrid with the ADST. We compare the performance of the hybrid transform with the ADST and show that a significant bit-rate reduction is obtained with the proposed transform.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"16 1\",\"pages\":\"2380-2384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在视频内编码中,利用内预测对内帧进行预测,并对预测残差信号进行编码。在许多基于变换的视频编码系统中,用变换对帧内预测残差进行编码。例如,在许多编码系统中,离散余弦变换(DCT)和非对称离散正弦变换(ADST)被用于预测帧内残差。在最近的工作中,提出了一组基于预测不准确性建模的变换。这些变换是基于这样的观察,即大部分剩余非平稳性是由于使用了不准确的预测参数。这些变换被证明是有效的非平稳性产生的方向内预测残差。本文在H.264帧内编码系统上实现了基于预测误差建模的变换。所提出的变换与ADST混合使用。我们将混合变换与ADST的性能进行了比较,结果表明混合变换能显著降低比特率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H.264 intra coding with transforms based on prediction inaccuracy modeling
In intra video coding, intra frames are predicted with intra prediction and the prediction residual signal is encoded. In many transform-based video coding systems, intra prediction residuals are encoded with transforms. For example, the Discrete Cosine Transform (DCT) and the Asymmetric Discrete Sine Transform (ADST) are used for intra prediction residuals in many coding systems. In the recent work, a set of transforms based on prediction inaccuracy modeling (PIM) has been proposed. These transforms are developed based on the observation that much of the residual non-stationarity is due to the use of an inaccurate prediction parameter. These transforms are shown to be effective for non-stationarity that arises in directional intra prediction residuals. In this paper, we implement the transforms based on prediction inaccuracy modeling on the H.264 intra coding system. The proposed transform is used in hybrid with the ADST. We compare the performance of the hybrid transform with the ADST and show that a significant bit-rate reduction is obtained with the proposed transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1