面向Peta级计算机的霍奇金-赫胥黎型神经元的神经回路模拟

Daisuke Miyamoto, T. Kazawa, R. Kanzaki
{"title":"面向Peta级计算机的霍奇金-赫胥黎型神经元的神经回路模拟","authors":"Daisuke Miyamoto, T. Kazawa, R. Kanzaki","doi":"10.1109/SC.Companion.2012.314","DOIUrl":null,"url":null,"abstract":"We ported and optimized simulation environment \"NEURON\" on K computer to simulate a insect brain as multi-compartment Hodgkin-Huxley type model. To use SIMD units of SPARC64VIIIfx (CPU of K computer), we exchanged the order of the compartment loop and the ion channel loop and apply sector caches. These tuning improved single core performance 340 MFLOPS/core to 1560 MFLOPS/core (about 10% efficiency).Spike exchange method of gNEURONh (MPI_Allgather) demands large amount of time in case of 10,000 cores or more and simple asynchronous point-to-point method (MPI_Isend) is not effective either, because of a large number of function calls and long distance of interconnect pathway. To tackle these problems, we adopted MPI/OpenMP hybrid parallelization to reduce interconnect communications and we developed a program to optimize location of neurons on calculation nodes in the 3D torus network. As a these results, we obtained 187 TFLOPS with 196,608 CPU cores.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"160 1","pages":"1541-1541"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Neural Circuit Simulation of Hodgkin-Huxley Type Neurons Toward Peta Scale Computers\",\"authors\":\"Daisuke Miyamoto, T. Kazawa, R. Kanzaki\",\"doi\":\"10.1109/SC.Companion.2012.314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We ported and optimized simulation environment \\\"NEURON\\\" on K computer to simulate a insect brain as multi-compartment Hodgkin-Huxley type model. To use SIMD units of SPARC64VIIIfx (CPU of K computer), we exchanged the order of the compartment loop and the ion channel loop and apply sector caches. These tuning improved single core performance 340 MFLOPS/core to 1560 MFLOPS/core (about 10% efficiency).Spike exchange method of gNEURONh (MPI_Allgather) demands large amount of time in case of 10,000 cores or more and simple asynchronous point-to-point method (MPI_Isend) is not effective either, because of a large number of function calls and long distance of interconnect pathway. To tackle these problems, we adopted MPI/OpenMP hybrid parallelization to reduce interconnect communications and we developed a program to optimize location of neurons on calculation nodes in the 3D torus network. As a these results, we obtained 187 TFLOPS with 196,608 CPU cores.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"160 1\",\"pages\":\"1541-1541\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将仿真环境“NEURON”移植并优化到K计算机上,以多室霍奇金-赫胥黎模型模拟昆虫脑。为了使用SPARC64VIIIfx (K计算机的CPU)的SIMD单元,我们交换了隔室环路和离子通道环路的顺序,并应用扇区缓存。这些调优将单核性能从340 MFLOPS/核提高到1560 MFLOPS/核(效率约为10%)。gNEURONh的尖峰交换方法(MPI_Allgather)在10000核以上的情况下需要大量的时间,简单的异步点对点方法(MPI_Isend)也不有效,因为函数调用量大,互连路径距离长。为了解决这些问题,我们采用MPI/OpenMP混合并行化来减少互连通信,并开发了一个程序来优化三维环面网络中计算节点上神经元的位置。根据这些结果,我们获得了187 TFLOPS和196,608个CPU内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Circuit Simulation of Hodgkin-Huxley Type Neurons Toward Peta Scale Computers
We ported and optimized simulation environment "NEURON" on K computer to simulate a insect brain as multi-compartment Hodgkin-Huxley type model. To use SIMD units of SPARC64VIIIfx (CPU of K computer), we exchanged the order of the compartment loop and the ion channel loop and apply sector caches. These tuning improved single core performance 340 MFLOPS/core to 1560 MFLOPS/core (about 10% efficiency).Spike exchange method of gNEURONh (MPI_Allgather) demands large amount of time in case of 10,000 cores or more and simple asynchronous point-to-point method (MPI_Isend) is not effective either, because of a large number of function calls and long distance of interconnect pathway. To tackle these problems, we adopted MPI/OpenMP hybrid parallelization to reduce interconnect communications and we developed a program to optimize location of neurons on calculation nodes in the 3D torus network. As a these results, we obtained 187 TFLOPS with 196,608 CPU cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1