D. Bowring, A. Bross, P. Lane, M. Leonova, A. Moretti, D. Neuffer, R. Pasquinelli, D. Peterson, M. Popovic, D. Stratakis, K. Yonehara, A. Kochemirovskiy, Y. Torun, C. Adolphsen, L. Ge, A. Haase, Z. Li, D. Martin, M. Chung, D. Li, T. Luo, B. Freemire, A. Liu, M. Palmer
{"title":"在多特斯拉磁场中运行正常导电射频腔进行介子电离冷却:可行性论证","authors":"D. Bowring, A. Bross, P. Lane, M. Leonova, A. Moretti, D. Neuffer, R. Pasquinelli, D. Peterson, M. Popovic, D. Stratakis, K. Yonehara, A. Kochemirovskiy, Y. Torun, C. Adolphsen, L. Ge, A. Haase, Z. Li, D. Martin, M. Chung, D. Li, T. Luo, B. Freemire, A. Liu, M. Palmer","doi":"10.1103/physrevaccelbeams.23.072001","DOIUrl":null,"url":null,"abstract":"Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and transmission efficiency. We present a solution to the problem of breakdown in strong magnetic fields. We report, for the first time, stable high-vacuum, copper cavity operation at gradients above 50 MV/m and in an external magnetic field of three tesla. This eliminates a significant technical risk that has previously been inherent in ionization cooling channel designs.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Operation of normal-conducting rf cavities in multi-Tesla magnetic fields for muon ionization cooling: A feasibility demonstration\",\"authors\":\"D. Bowring, A. Bross, P. Lane, M. Leonova, A. Moretti, D. Neuffer, R. Pasquinelli, D. Peterson, M. Popovic, D. Stratakis, K. Yonehara, A. Kochemirovskiy, Y. Torun, C. Adolphsen, L. Ge, A. Haase, Z. Li, D. Martin, M. Chung, D. Li, T. Luo, B. Freemire, A. Liu, M. Palmer\",\"doi\":\"10.1103/physrevaccelbeams.23.072001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and transmission efficiency. We present a solution to the problem of breakdown in strong magnetic fields. We report, for the first time, stable high-vacuum, copper cavity operation at gradients above 50 MV/m and in an external magnetic field of three tesla. This eliminates a significant technical risk that has previously been inherent in ionization cooling channel designs.\",\"PeriodicalId\":8436,\"journal\":{\"name\":\"arXiv: Accelerator Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.23.072001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.23.072001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation of normal-conducting rf cavities in multi-Tesla magnetic fields for muon ionization cooling: A feasibility demonstration
Ionization cooling is the preferred method for producing bright muon beams. This cooling technique requires the operation of normal conducting, radio-frequency (RF) accelerating cavities within the multi-tesla fields of DC solenoid magnets. Under these conditions, cavities exhibit increased susceptibility to RF breakdown, which can damage channel components and imposes limits on channel length and transmission efficiency. We present a solution to the problem of breakdown in strong magnetic fields. We report, for the first time, stable high-vacuum, copper cavity operation at gradients above 50 MV/m and in an external magnetic field of three tesla. This eliminates a significant technical risk that has previously been inherent in ionization cooling channel designs.