移动宽带网络的多路可靠性分析

Mah-Rukh Fida, E. Acar, A. Elmokashfi
{"title":"移动宽带网络的多路可靠性分析","authors":"Mah-Rukh Fida, E. Acar, A. Elmokashfi","doi":"10.1145/3355369.3355591","DOIUrl":null,"url":null,"abstract":"Understanding and characterizing the reliability of a mobile broadband network is a challenging task due to the presence of a multitude of root causes that operate at different temporal and spatial scales. This, in turn, limits the use of classical statistical methods for characterizing the mobile network's reliability. We propose leveraging tensor factorizations, a well-established data mining method, to address this challenge. We represent a year-long time series of outages, from two mobile operators as multi-way arrays, and demonstrate how tensor factorizations help in extracting the outage patterns at various time-scales, making it easy to locate possible root causes. Unlike traditional methods of time series analysis, tensor factorizations provide a compact and interpretable picture of outages.","PeriodicalId":20640,"journal":{"name":"Proceedings of the Internet Measurement Conference 2018","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiway Reliability Analysis of Mobile Broadband Networks\",\"authors\":\"Mah-Rukh Fida, E. Acar, A. Elmokashfi\",\"doi\":\"10.1145/3355369.3355591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding and characterizing the reliability of a mobile broadband network is a challenging task due to the presence of a multitude of root causes that operate at different temporal and spatial scales. This, in turn, limits the use of classical statistical methods for characterizing the mobile network's reliability. We propose leveraging tensor factorizations, a well-established data mining method, to address this challenge. We represent a year-long time series of outages, from two mobile operators as multi-way arrays, and demonstrate how tensor factorizations help in extracting the outage patterns at various time-scales, making it easy to locate possible root causes. Unlike traditional methods of time series analysis, tensor factorizations provide a compact and interpretable picture of outages.\",\"PeriodicalId\":20640,\"journal\":{\"name\":\"Proceedings of the Internet Measurement Conference 2018\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Internet Measurement Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355369.3355591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Internet Measurement Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355369.3355591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

理解和描述移动宽带网络的可靠性是一项具有挑战性的任务,因为存在许多在不同时间和空间尺度上运行的根本原因。这反过来又限制了使用经典的统计方法来表征移动网络的可靠性。我们建议利用张量分解,一种完善的数据挖掘方法,来解决这一挑战。我们将两家移动运营商一年的停机时间序列表示为多向数组,并演示张量分解如何帮助提取各种时间尺度上的停机模式,从而轻松定位可能的根本原因。与传统的时间序列分析方法不同,张量分解提供了一个紧凑的和可解释的停机图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiway Reliability Analysis of Mobile Broadband Networks
Understanding and characterizing the reliability of a mobile broadband network is a challenging task due to the presence of a multitude of root causes that operate at different temporal and spatial scales. This, in turn, limits the use of classical statistical methods for characterizing the mobile network's reliability. We propose leveraging tensor factorizations, a well-established data mining method, to address this challenge. We represent a year-long time series of outages, from two mobile operators as multi-way arrays, and demonstrate how tensor factorizations help in extracting the outage patterns at various time-scales, making it easy to locate possible root causes. Unlike traditional methods of time series analysis, tensor factorizations provide a compact and interpretable picture of outages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Permission Requests in Mobile Apps A Look at the ECS Behavior of DNS Resolvers RPKI is Coming of Age: A Longitudinal Study of RPKI Deployment and Invalid Route Origins Scanning the Scanners: Sensing the Internet from a Massively Distributed Network Telescope Learning Regexes to Extract Router Names from Hostnames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1