基于lum损失的分类学习算法误差分析

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS Mathematical foundations of computing Pub Date : 2023-01-01 DOI:10.3934/mfc.2022028
Xuqing He, Hongwei Sun
{"title":"基于lum损失的分类学习算法误差分析","authors":"Xuqing He, Hongwei Sun","doi":"10.3934/mfc.2022028","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space <inline-formula><tex-math id=\"M1\">\\begin{document}$ {\\mathcal H}_K $\\end{document}</tex-math></inline-formula>, and the penalty term is denoted by the norm of the function in <inline-formula><tex-math id=\"M2\">\\begin{document}$ {\\mathcal H}_K $\\end{document}</tex-math></inline-formula>. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer <inline-formula><tex-math id=\"M3\">\\begin{document}$ f_V $\\end{document}</tex-math></inline-formula> of the generalization error can be approximated by the hypothesis space <inline-formula><tex-math id=\"M4\">\\begin{document}$ {\\mathcal H}_K $\\end{document}</tex-math></inline-formula>, and by a leave one out variant technique proposed in [<xref ref-type=\"bibr\" rid=\"b13\">13</xref>], satisfying error bound and learning rate about the mean of excess classification error are deduced.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"78 1","pages":"616-624"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Error analysis of classification learning algorithms based on LUMs loss\",\"authors\":\"Xuqing He, Hongwei Sun\",\"doi\":\"10.3934/mfc.2022028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ {\\\\mathcal H}_K $\\\\end{document}</tex-math></inline-formula>, and the penalty term is denoted by the norm of the function in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ {\\\\mathcal H}_K $\\\\end{document}</tex-math></inline-formula>. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [<xref ref-type=\\\"bibr\\\" rid=\\\"b3\\\">3</xref>] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ f_V $\\\\end{document}</tex-math></inline-formula> of the generalization error can be approximated by the hypothesis space <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ {\\\\mathcal H}_K $\\\\end{document}</tex-math></inline-formula>, and by a leave one out variant technique proposed in [<xref ref-type=\\\"bibr\\\" rid=\\\"b13\\\">13</xref>], satisfying error bound and learning rate about the mean of excess classification error are deduced.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":\"78 1\",\"pages\":\"616-624\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space \begin{document}$ {\mathcal H}_K $\end{document}, and the penalty term is denoted by the norm of the function in \begin{document}$ {\mathcal H}_K $\end{document}. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [3] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer \begin{document}$ f_V $\end{document} of the generalization error can be approximated by the hypothesis space \begin{document}$ {\mathcal H}_K $\end{document}, and by a leave one out variant technique proposed in [13], satisfying error bound and learning rate about the mean of excess classification error are deduced.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error analysis of classification learning algorithms based on LUMs loss

In this paper, we study the learning performance of regularized large-margin unified machines (LUMs) for classification problem. The hypothesis space is taken to be a reproducing kernel Hilbert space \begin{document}$ {\mathcal H}_K $\end{document}, and the penalty term is denoted by the norm of the function in \begin{document}$ {\mathcal H}_K $\end{document}. Since the LUM loss functions are differentiable and convex, so the data piling phenomena can be avoided when dealing with the high-dimension low-sample size data. The error analysis of this classification learning machine mainly lies upon the comparison theorem [3] which ensures that the excess classification error can be bounded by the excess generalization error. Under a mild source condition which shows that the minimizer \begin{document}$ f_V $\end{document} of the generalization error can be approximated by the hypothesis space \begin{document}$ {\mathcal H}_K $\end{document}, and by a leave one out variant technique proposed in [13], satisfying error bound and learning rate about the mean of excess classification error are deduced.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
期刊最新文献
Stability analysis of fractional order modelling of social media addiction Generalized Ismail-Durrmeyer type operators involving Sheffer polynomials On hybrid Baskakov operators preserving two exponential functions Approximation rate and saturation under generalized convergence Lyapunov type inequalities for nonlinear fractional Hamiltonian systems in the frame of conformable derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1