{"title":"全幻灯片图像分类的多尺度原型变压器","authors":"Saisai Ding, Jun Wang, Juncheng Li, Jun Shi","doi":"10.48550/arXiv.2307.02308","DOIUrl":null,"url":null,"abstract":"Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains challenging due to the extreme imbalance between the positive and negative instances in bags, and the complicated pre-processing to fuse multi-scale information of WSI. To this end, we propose a novel multi-scale prototypical Transformer (MSPT) for WSI classification, which includes a prototypical Transformer (PT) module and a multi-scale feature fusion module (MFFM). The PT is developed to reduce redundant instances in bags by integrating prototypical learning into the Transformer architecture. It substitutes all instances with cluster prototypes, which are then re-calibrated through the self-attention mechanism of the Trans-former. Thereafter, an MFFM is proposed to fuse the clustered prototypes of different scales, which employs MLP-Mixer to enhance the information communication between prototypes. The experimental results on two public WSI datasets demonstrate that the proposed MSPT outperforms all the compared algorithms, suggesting its potential applications.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"32 1","pages":"602-611"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Scale Prototypical Transformer for Whole Slide Image Classification\",\"authors\":\"Saisai Ding, Jun Wang, Juncheng Li, Jun Shi\",\"doi\":\"10.48550/arXiv.2307.02308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains challenging due to the extreme imbalance between the positive and negative instances in bags, and the complicated pre-processing to fuse multi-scale information of WSI. To this end, we propose a novel multi-scale prototypical Transformer (MSPT) for WSI classification, which includes a prototypical Transformer (PT) module and a multi-scale feature fusion module (MFFM). The PT is developed to reduce redundant instances in bags by integrating prototypical learning into the Transformer architecture. It substitutes all instances with cluster prototypes, which are then re-calibrated through the self-attention mechanism of the Trans-former. Thereafter, an MFFM is proposed to fuse the clustered prototypes of different scales, which employs MLP-Mixer to enhance the information communication between prototypes. The experimental results on two public WSI datasets demonstrate that the proposed MSPT outperforms all the compared algorithms, suggesting its potential applications.\",\"PeriodicalId\":18289,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"32 1\",\"pages\":\"602-611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.02308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.02308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

全切片图像(WSI)分类是计算病理学中的一项重要任务。尽管近年来在WSI分类的多实例学习(MIL)方面取得了一些进展,但由于袋中正、负实例之间的极度不平衡,以及融合WSI多尺度信息的复杂预处理,对WSI的准确分类仍然是一个挑战。为此,我们提出了一种新的用于WSI分类的多尺度原型变压器(MSPT),它包括一个原型变压器(PT)模块和一个多尺度特征融合模块(MFFM)。PT的开发是为了通过将原型学习集成到Transformer体系结构中来减少冗余实例。它用集群原型代替所有实例,然后通过变形金刚的自我关注机制重新校准。在此基础上,提出了一种融合不同尺度聚类原型的MFFM模型,该模型采用MLP-Mixer增强原型之间的信息通信。在两个公共WSI数据集上的实验结果表明,所提出的MSPT算法优于所有比较算法,表明了其潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Scale Prototypical Transformer for Whole Slide Image Classification
Whole slide image (WSI) classification is an essential task in computational pathology. Despite the recent advances in multiple instance learning (MIL) for WSI classification, accurate classification of WSIs remains challenging due to the extreme imbalance between the positive and negative instances in bags, and the complicated pre-processing to fuse multi-scale information of WSI. To this end, we propose a novel multi-scale prototypical Transformer (MSPT) for WSI classification, which includes a prototypical Transformer (PT) module and a multi-scale feature fusion module (MFFM). The PT is developed to reduce redundant instances in bags by integrating prototypical learning into the Transformer architecture. It substitutes all instances with cluster prototypes, which are then re-calibrated through the self-attention mechanism of the Trans-former. Thereafter, an MFFM is proposed to fuse the clustered prototypes of different scales, which employs MLP-Mixer to enhance the information communication between prototypes. The experimental results on two public WSI datasets demonstrate that the proposed MSPT outperforms all the compared algorithms, suggesting its potential applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-Ray Images of Multiple Body Parts Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images Self-Supervised Learning for Endoscopic Video Analysis Exploring Unsupervised Cell Recognition with Prior Self-activation Maps DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1