植入式医疗设备的能量收集和电力输送

C. Tsui, Xing Li, W. Ki
{"title":"植入式医疗设备的能量收集和电力输送","authors":"C. Tsui, Xing Li, W. Ki","doi":"10.1561/1000000029","DOIUrl":null,"url":null,"abstract":"Providing a constant and perpetual energy source is a key design challenge for implantable medical devices. Harvesting energy from the human body and the surrounding is one of the possible solutions. Delivering energy from outside the body through different wireless media is another feasible solution. In this monograph, we review different state-of-the-art mechanisms that do \"in-body\" energy harvesting as well as \"out-of-body\" wireless power delivery. Details of the energy sources, transmission media, energy harvesting and coupling techniques, and the required energy transducers will be discussed. The merits and disadvantages of each approach will be presented. Different mechanisms have very different characteristics on their output voltage, amount of harvested power and power transfer efficiency. Therefore different types of power conditioning circuits are required. Issues of designing the building blocks for the power conditioning circuits for different energy harvesting or coupling mechanisms will be compared.","PeriodicalId":42137,"journal":{"name":"Foundations and Trends in Electronic Design Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Energy Harvesting and Power Delivery for Implantable Medical Devices\",\"authors\":\"C. Tsui, Xing Li, W. Ki\",\"doi\":\"10.1561/1000000029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Providing a constant and perpetual energy source is a key design challenge for implantable medical devices. Harvesting energy from the human body and the surrounding is one of the possible solutions. Delivering energy from outside the body through different wireless media is another feasible solution. In this monograph, we review different state-of-the-art mechanisms that do \\\"in-body\\\" energy harvesting as well as \\\"out-of-body\\\" wireless power delivery. Details of the energy sources, transmission media, energy harvesting and coupling techniques, and the required energy transducers will be discussed. The merits and disadvantages of each approach will be presented. Different mechanisms have very different characteristics on their output voltage, amount of harvested power and power transfer efficiency. Therefore different types of power conditioning circuits are required. Issues of designing the building blocks for the power conditioning circuits for different energy harvesting or coupling mechanisms will be compared.\",\"PeriodicalId\":42137,\"journal\":{\"name\":\"Foundations and Trends in Electronic Design Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Electronic Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1000000029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Electronic Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1000000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 16

摘要

提供恒定和永久的能源是植入式医疗设备设计的一个关键挑战。从人体和周围环境中收集能量是一种可能的解决方案。通过不同的无线媒介从体外输送能量是另一种可行的解决方案。在这篇专著中,我们回顾了不同的最先进的机制,做“体内”能量收集和“体外”无线电力输送。详细的能源,传输介质,能量收集和耦合技术,以及所需的能量换能器将被讨论。本文将介绍每种方法的优缺点。不同的机构在输出电压、收获功率和功率传输效率上有很大的不同。因此,需要不同类型的功率调节电路。将比较不同能量收集或耦合机制的功率调节电路的设计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy Harvesting and Power Delivery for Implantable Medical Devices
Providing a constant and perpetual energy source is a key design challenge for implantable medical devices. Harvesting energy from the human body and the surrounding is one of the possible solutions. Delivering energy from outside the body through different wireless media is another feasible solution. In this monograph, we review different state-of-the-art mechanisms that do "in-body" energy harvesting as well as "out-of-body" wireless power delivery. Details of the energy sources, transmission media, energy harvesting and coupling techniques, and the required energy transducers will be discussed. The merits and disadvantages of each approach will be presented. Different mechanisms have very different characteristics on their output voltage, amount of harvested power and power transfer efficiency. Therefore different types of power conditioning circuits are required. Issues of designing the building blocks for the power conditioning circuits for different energy harvesting or coupling mechanisms will be compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foundations and Trends in Electronic Design Automation
Foundations and Trends in Electronic Design Automation ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
0
期刊介绍: Foundations and Trends® in Electronic Design Automation publishes survey and tutorial articles in the following topics: - System Level Design - Behavioral Synthesis - Logic Design - Verification - Test - Physical Design - Circuit Level Design - Reconfigurable Systems - Analog Design Each issue of Foundations and Trends® in Electronic Design Automation comprises a 50-100 page monograph written by research leaders in the field.
期刊最新文献
From CNN to DNN Hardware Accelerators: A Survey on Design, Exploration, Simulation, and Frameworks Self-Powered Wearable IoT Devices for Health and Activity Monitoring On-Chip Dynamic Resource Management Contracts for System Design Non-Boolean Computing with Spintronic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1