马氏体时效钢增材制造中熔池形状的简化预测

Taiichiro Fukunaga, H. Narahara
{"title":"马氏体时效钢增材制造中熔池形状的简化预测","authors":"Taiichiro Fukunaga, H. Narahara","doi":"10.20965/ijat.2022.p0609","DOIUrl":null,"url":null,"abstract":"This paper describes a method to represent and predict the melting and solidifying shape of metal powder materials in the selective laser melting (SLM) method of metal addition manufacturing using a small number of physical properties. This is a processing method to complete a three-dimensional modeling object by layer-by-layer stacking. A laser beam is used to create objects with minimal voids and distortion by appropriately setting the scanning speed, output intensity, spot diameter, hatch spacing, and other conditions. Repeating actual experiments to determine the optimal build conditions increases the cost of operating the machine, such as electricity and labor, and the cost of materials when a modeling failure occurs. In recent years, attempts have been made to determine the optimal build conditions by analyzing the melting and solidification phenomena of metallic materials through precise simulations. However, it is necessary to set many physical property values as the parameters. Many physical property values are difficult to measure, and if these values are incorrect, the analysis results can differ significantly. In this study, a theoretical model for predicting the cross-sectional area and cross-sectional thickness of the melt pool using a single-track laser was developed using a small number of physical properties, such as melting point, thermal conductivity, and latent heat. To further examine the validity of the theoretical model, experiments were conducted for comparison purposes. In this experiment, 5 × 1 × 1 mm rectangular specimens were stacked and fabricated by a metal additive manufacturing machine using different laser beam irradiation conditions. The fabricated samples were cut, polished, and etched with nital, and the melt pool shapes were measured. Finally, experimental and theoretical values were compared to confirm the validity of the constructed theoretical model. This indicates that the proposed model can predict the melt pool shape.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"69 1","pages":"609-614"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simplified Prediction of Melt Pool Shape in Metal Additive Manufacturing Using Maraging Steel\",\"authors\":\"Taiichiro Fukunaga, H. Narahara\",\"doi\":\"10.20965/ijat.2022.p0609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method to represent and predict the melting and solidifying shape of metal powder materials in the selective laser melting (SLM) method of metal addition manufacturing using a small number of physical properties. This is a processing method to complete a three-dimensional modeling object by layer-by-layer stacking. A laser beam is used to create objects with minimal voids and distortion by appropriately setting the scanning speed, output intensity, spot diameter, hatch spacing, and other conditions. Repeating actual experiments to determine the optimal build conditions increases the cost of operating the machine, such as electricity and labor, and the cost of materials when a modeling failure occurs. In recent years, attempts have been made to determine the optimal build conditions by analyzing the melting and solidification phenomena of metallic materials through precise simulations. However, it is necessary to set many physical property values as the parameters. Many physical property values are difficult to measure, and if these values are incorrect, the analysis results can differ significantly. In this study, a theoretical model for predicting the cross-sectional area and cross-sectional thickness of the melt pool using a single-track laser was developed using a small number of physical properties, such as melting point, thermal conductivity, and latent heat. To further examine the validity of the theoretical model, experiments were conducted for comparison purposes. In this experiment, 5 × 1 × 1 mm rectangular specimens were stacked and fabricated by a metal additive manufacturing machine using different laser beam irradiation conditions. The fabricated samples were cut, polished, and etched with nital, and the melt pool shapes were measured. Finally, experimental and theoretical values were compared to confirm the validity of the constructed theoretical model. This indicates that the proposed model can predict the melt pool shape.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"69 1\",\"pages\":\"609-614\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种利用少量物理性质表征和预测金属加成制造中选择性激光熔化(SLM)方法中金属粉末材料熔化和凝固形状的方法。这是一种通过逐层叠加来完成三维建模对象的处理方法。激光束通过适当设置扫描速度、输出强度、光斑直径、舱口间距和其他条件来创建具有最小空隙和畸变的物体。重复实际实验以确定最佳构建条件会增加操作机器的成本,例如电力和人工成本,以及建模失败时的材料成本。近年来,人们试图通过精确的模拟来分析金属材料的熔化和凝固现象,以确定最佳的制造条件。但是,需要设置许多物理属性值作为参数。许多物理性质值很难测量,如果这些值不正确,分析结果可能会有很大差异。在这项研究中,利用熔点、导热系数和潜热等少量物理性质,建立了一个利用单道激光预测熔池横截面积和横截厚度的理论模型。为了进一步检验理论模型的有效性,进行了实验比较。在金属增材制造机上,采用不同的激光束照射条件,对5 × 1 × 1 mm的矩形试件进行堆叠和加工。对制备的样品进行切割、抛光和蚀刻,并测量熔池形状。最后,将实验值与理论值进行对比,验证了所构建理论模型的有效性。这表明该模型可以预测熔池的形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified Prediction of Melt Pool Shape in Metal Additive Manufacturing Using Maraging Steel
This paper describes a method to represent and predict the melting and solidifying shape of metal powder materials in the selective laser melting (SLM) method of metal addition manufacturing using a small number of physical properties. This is a processing method to complete a three-dimensional modeling object by layer-by-layer stacking. A laser beam is used to create objects with minimal voids and distortion by appropriately setting the scanning speed, output intensity, spot diameter, hatch spacing, and other conditions. Repeating actual experiments to determine the optimal build conditions increases the cost of operating the machine, such as electricity and labor, and the cost of materials when a modeling failure occurs. In recent years, attempts have been made to determine the optimal build conditions by analyzing the melting and solidification phenomena of metallic materials through precise simulations. However, it is necessary to set many physical property values as the parameters. Many physical property values are difficult to measure, and if these values are incorrect, the analysis results can differ significantly. In this study, a theoretical model for predicting the cross-sectional area and cross-sectional thickness of the melt pool using a single-track laser was developed using a small number of physical properties, such as melting point, thermal conductivity, and latent heat. To further examine the validity of the theoretical model, experiments were conducted for comparison purposes. In this experiment, 5 × 1 × 1 mm rectangular specimens were stacked and fabricated by a metal additive manufacturing machine using different laser beam irradiation conditions. The fabricated samples were cut, polished, and etched with nital, and the melt pool shapes were measured. Finally, experimental and theoretical values were compared to confirm the validity of the constructed theoretical model. This indicates that the proposed model can predict the melt pool shape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1