{"title":"基于L0梯度最小化的距离谱聚类方法","authors":"Gang Shen, Yuteng Ye","doi":"10.1109/CISP-BMEI.2017.8301974","DOIUrl":null,"url":null,"abstract":"Spectral clustering has recently achieved a plenty of successful applications in the fields of image processing and object pattern recognition. However, it is a frequent challenging problem that many spectral clustering algorithms suffer from the sensitivity in the selection of the parameters for their Gaussian kernel functions and K-means partitioning processes. To alleviate this situation, we first construct a distance matrix and project the data points into the eigen-space spanned by the selected eigenvectors, then we apply the proposed partitioning algorithm inspired by the continuity of data distribution. In order to partition the data points projected on the eigenvectors, we formulate a cost function with quadratic data-fidelity and L0 gradient constraint, and the optimal solution can be obtained with the use of alternating direction method of multipliers (ADMM). The proposed approach has been tested for the image segmentation problems. The experiments on the benchmark image datasets showed that the proposal was able to achieve efficient and effective results with the help of the superpixels.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"205 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A distance-based spectral clustering approach with L0 Gradient Minimization\",\"authors\":\"Gang Shen, Yuteng Ye\",\"doi\":\"10.1109/CISP-BMEI.2017.8301974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering has recently achieved a plenty of successful applications in the fields of image processing and object pattern recognition. However, it is a frequent challenging problem that many spectral clustering algorithms suffer from the sensitivity in the selection of the parameters for their Gaussian kernel functions and K-means partitioning processes. To alleviate this situation, we first construct a distance matrix and project the data points into the eigen-space spanned by the selected eigenvectors, then we apply the proposed partitioning algorithm inspired by the continuity of data distribution. In order to partition the data points projected on the eigenvectors, we formulate a cost function with quadratic data-fidelity and L0 gradient constraint, and the optimal solution can be obtained with the use of alternating direction method of multipliers (ADMM). The proposed approach has been tested for the image segmentation problems. The experiments on the benchmark image datasets showed that the proposal was able to achieve efficient and effective results with the help of the superpixels.\",\"PeriodicalId\":6474,\"journal\":{\"name\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"205 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2017.8301974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,光谱聚类在图像处理和目标模式识别领域取得了大量成功的应用。然而,许多谱聚类算法在高斯核函数参数选择和k均值划分过程中存在敏感性问题,这是一个经常面临的挑战。为了缓解这种情况,我们首先构造一个距离矩阵,并将数据点投影到所选特征向量所张成的特征空间中,然后应用基于数据分布连续性的分区算法。为了对投影在特征向量上的数据点进行划分,我们建立了一个具有二次数据保真度和L0梯度约束的代价函数,并利用乘法器的交替方向法(ADMM)得到了最优解。该方法已经过图像分割问题的测试。在基准图像数据集上的实验表明,该方法能够在超像素的帮助下获得高效的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distance-based spectral clustering approach with L0 Gradient Minimization
Spectral clustering has recently achieved a plenty of successful applications in the fields of image processing and object pattern recognition. However, it is a frequent challenging problem that many spectral clustering algorithms suffer from the sensitivity in the selection of the parameters for their Gaussian kernel functions and K-means partitioning processes. To alleviate this situation, we first construct a distance matrix and project the data points into the eigen-space spanned by the selected eigenvectors, then we apply the proposed partitioning algorithm inspired by the continuity of data distribution. In order to partition the data points projected on the eigenvectors, we formulate a cost function with quadratic data-fidelity and L0 gradient constraint, and the optimal solution can be obtained with the use of alternating direction method of multipliers (ADMM). The proposed approach has been tested for the image segmentation problems. The experiments on the benchmark image datasets showed that the proposal was able to achieve efficient and effective results with the help of the superpixels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1