基于脑电数据和人工神经网络的混淆程度分类

Claire Receli M. Reñosa, Dr. Argel A. Bandala, Dr. Ryan Rhay P. Vicerra
{"title":"基于脑电数据和人工神经网络的混淆程度分类","authors":"Claire Receli M. Reñosa, Dr. Argel A. Bandala, Dr. Ryan Rhay P. Vicerra","doi":"10.1109/HNICEM48295.2019.9072766","DOIUrl":null,"url":null,"abstract":"the purpose of this study is to create an artificial neural network (ANN) that can classify a person’s level of confusion using Electroencephalography (EEG) data, more specifically, using the power spectrum of all the brain wave frequencies. This could help people in understanding the complicated mechanisms present in the brain, including the role that each specific brain wave signal plays in the formation of different cognitive activities in one’s mind such as confusion and workload. This study is categorized as a cognitive-affective state research, inspired by its current possible application to different existing societal fields such as education and gaming industries. The processing platforms used to process and interpret the dataset used in this research are Microsoft Excel and MATLAB software, applying frequency-based analysis and standard averaging methods fit for EEG data classification and artificial neural network modeling.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of Confusion Level Using EEG Data and Artificial Neural Networks\",\"authors\":\"Claire Receli M. Reñosa, Dr. Argel A. Bandala, Dr. Ryan Rhay P. Vicerra\",\"doi\":\"10.1109/HNICEM48295.2019.9072766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the purpose of this study is to create an artificial neural network (ANN) that can classify a person’s level of confusion using Electroencephalography (EEG) data, more specifically, using the power spectrum of all the brain wave frequencies. This could help people in understanding the complicated mechanisms present in the brain, including the role that each specific brain wave signal plays in the formation of different cognitive activities in one’s mind such as confusion and workload. This study is categorized as a cognitive-affective state research, inspired by its current possible application to different existing societal fields such as education and gaming industries. The processing platforms used to process and interpret the dataset used in this research are Microsoft Excel and MATLAB software, applying frequency-based analysis and standard averaging methods fit for EEG data classification and artificial neural network modeling.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9072766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究的目的是创建一个人工神经网络(ANN),该网络可以使用脑电图(EEG)数据,更具体地说,使用所有脑电波频率的功率谱,对一个人的困惑程度进行分类。这可以帮助人们理解大脑中存在的复杂机制,包括每个特定的脑电波信号在一个人的大脑中形成不同的认知活动(如困惑和工作量)中所起的作用。这项研究被归类为认知-情感状态研究,灵感来自于它目前可能应用于不同的现有社会领域,如教育和游戏行业。本研究使用的数据集处理和解释的处理平台为Microsoft Excel和MATLAB软件,采用适合脑电数据分类和人工神经网络建模的基于频率的分析和标准平均方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Confusion Level Using EEG Data and Artificial Neural Networks
the purpose of this study is to create an artificial neural network (ANN) that can classify a person’s level of confusion using Electroencephalography (EEG) data, more specifically, using the power spectrum of all the brain wave frequencies. This could help people in understanding the complicated mechanisms present in the brain, including the role that each specific brain wave signal plays in the formation of different cognitive activities in one’s mind such as confusion and workload. This study is categorized as a cognitive-affective state research, inspired by its current possible application to different existing societal fields such as education and gaming industries. The processing platforms used to process and interpret the dataset used in this research are Microsoft Excel and MATLAB software, applying frequency-based analysis and standard averaging methods fit for EEG data classification and artificial neural network modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovations on Advanced Transportation Systems for Local Applications An Aquaculture-Based Binary Classifier for Fish Detection using Multilayer Artificial Neural Network Design and Analysis of Hip Joint DOFs for Lower Limb Robotic Exoskeleton Sum of Absolute Difference-based Rate-Distortion Optimization Cost Function for H.265/HEVC Intra-Mode Prediction Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1