Claire Receli M. Reñosa, Dr. Argel A. Bandala, Dr. Ryan Rhay P. Vicerra
{"title":"基于脑电数据和人工神经网络的混淆程度分类","authors":"Claire Receli M. Reñosa, Dr. Argel A. Bandala, Dr. Ryan Rhay P. Vicerra","doi":"10.1109/HNICEM48295.2019.9072766","DOIUrl":null,"url":null,"abstract":"the purpose of this study is to create an artificial neural network (ANN) that can classify a person’s level of confusion using Electroencephalography (EEG) data, more specifically, using the power spectrum of all the brain wave frequencies. This could help people in understanding the complicated mechanisms present in the brain, including the role that each specific brain wave signal plays in the formation of different cognitive activities in one’s mind such as confusion and workload. This study is categorized as a cognitive-affective state research, inspired by its current possible application to different existing societal fields such as education and gaming industries. The processing platforms used to process and interpret the dataset used in this research are Microsoft Excel and MATLAB software, applying frequency-based analysis and standard averaging methods fit for EEG data classification and artificial neural network modeling.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"10 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of Confusion Level Using EEG Data and Artificial Neural Networks\",\"authors\":\"Claire Receli M. Reñosa, Dr. Argel A. Bandala, Dr. Ryan Rhay P. Vicerra\",\"doi\":\"10.1109/HNICEM48295.2019.9072766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the purpose of this study is to create an artificial neural network (ANN) that can classify a person’s level of confusion using Electroencephalography (EEG) data, more specifically, using the power spectrum of all the brain wave frequencies. This could help people in understanding the complicated mechanisms present in the brain, including the role that each specific brain wave signal plays in the formation of different cognitive activities in one’s mind such as confusion and workload. This study is categorized as a cognitive-affective state research, inspired by its current possible application to different existing societal fields such as education and gaming industries. The processing platforms used to process and interpret the dataset used in this research are Microsoft Excel and MATLAB software, applying frequency-based analysis and standard averaging methods fit for EEG data classification and artificial neural network modeling.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"10 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9072766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Confusion Level Using EEG Data and Artificial Neural Networks
the purpose of this study is to create an artificial neural network (ANN) that can classify a person’s level of confusion using Electroencephalography (EEG) data, more specifically, using the power spectrum of all the brain wave frequencies. This could help people in understanding the complicated mechanisms present in the brain, including the role that each specific brain wave signal plays in the formation of different cognitive activities in one’s mind such as confusion and workload. This study is categorized as a cognitive-affective state research, inspired by its current possible application to different existing societal fields such as education and gaming industries. The processing platforms used to process and interpret the dataset used in this research are Microsoft Excel and MATLAB software, applying frequency-based analysis and standard averaging methods fit for EEG data classification and artificial neural network modeling.