带有修饰磷酸基团的ATP和ADP衍生物的“应变效应”描述符

Katrin Sak, Jaak Järv, Mati Karelson
{"title":"带有修饰磷酸基团的ATP和ADP衍生物的“应变效应”描述符","authors":"Katrin Sak,&nbsp;Jaak Järv,&nbsp;Mati Karelson","doi":"10.1016/S0097-8485(01)00126-7","DOIUrl":null,"url":null,"abstract":"<div><p>Semiempirical AM1 calculations were carried out for quantum chemically optimized conformations of ATP and ADP and their modified phosphate derivatives with the oxygen atoms intervening between phosphorus atoms substituted by imido or methylene groups or the double-bonded oxygen atoms substituted by sulfur. In addition to the calculation of conventional geometric and energetic parameters, the effect of these substitutions was quantified in terms of conformational ‘strain energy’. The latter has been defined as the energy of transformation of the parent nucleotide (ATP or ADP) from the optimum conformation to the conformation optimized for its phosphate-modified analog. The results of calculations revealed that conformational ‘strain’ of phosphate-modified nucleotides depends not only on the nature of the substituent but also on its position. The respective effect had the largest magnitude when the substitution was made between two terminal phosphorus atoms. Given that the ‘strain energy’ characterizes the geometrical aspects of the interaction of nucleotide molecules with receptors and enzymes, an attempt was made to correlate it with the corresponding biological activities. Such correlation was significant in the case of highly specific binding sites for universal ligands like ATP.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 4","pages":"Pages 341-346"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00126-7","citationCount":"2","resultStr":"{\"title\":\"‘Strain effect’ descriptors for ATP and ADP derivatives with modified phosphate groups\",\"authors\":\"Katrin Sak,&nbsp;Jaak Järv,&nbsp;Mati Karelson\",\"doi\":\"10.1016/S0097-8485(01)00126-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semiempirical AM1 calculations were carried out for quantum chemically optimized conformations of ATP and ADP and their modified phosphate derivatives with the oxygen atoms intervening between phosphorus atoms substituted by imido or methylene groups or the double-bonded oxygen atoms substituted by sulfur. In addition to the calculation of conventional geometric and energetic parameters, the effect of these substitutions was quantified in terms of conformational ‘strain energy’. The latter has been defined as the energy of transformation of the parent nucleotide (ATP or ADP) from the optimum conformation to the conformation optimized for its phosphate-modified analog. The results of calculations revealed that conformational ‘strain’ of phosphate-modified nucleotides depends not only on the nature of the substituent but also on its position. The respective effect had the largest magnitude when the substitution was made between two terminal phosphorus atoms. Given that the ‘strain energy’ characterizes the geometrical aspects of the interaction of nucleotide molecules with receptors and enzymes, an attempt was made to correlate it with the corresponding biological activities. Such correlation was significant in the case of highly specific binding sites for universal ligands like ATP.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 4\",\"pages\":\"Pages 341-346\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00126-7\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501001267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对量子化学优化的ATP和ADP及其修饰的磷酸盐衍生物的构象进行了半经验AM1计算,其中氧原子介于被亚胺或亚甲基取代的磷原子之间或被硫取代的双键氧原子之间。除了计算常规的几何和能量参数外,这些取代的影响还被量化为构象“应变能”。后者被定义为母体核苷酸(ATP或ADP)从最佳构象转化为其磷酸盐修饰类似物优化构象的能量。计算结果表明,磷酸盐修饰核苷酸的构象“应变”不仅取决于取代基的性质,还取决于它的位置。在两个末端磷原子之间进行取代时,各自的影响最大。考虑到“应变能”是核苷酸分子与受体和酶相互作用的几何特征,我们试图将其与相应的生物活动联系起来。这种相关性在ATP等通用配体的高度特异性结合位点的情况下是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
‘Strain effect’ descriptors for ATP and ADP derivatives with modified phosphate groups

Semiempirical AM1 calculations were carried out for quantum chemically optimized conformations of ATP and ADP and their modified phosphate derivatives with the oxygen atoms intervening between phosphorus atoms substituted by imido or methylene groups or the double-bonded oxygen atoms substituted by sulfur. In addition to the calculation of conventional geometric and energetic parameters, the effect of these substitutions was quantified in terms of conformational ‘strain energy’. The latter has been defined as the energy of transformation of the parent nucleotide (ATP or ADP) from the optimum conformation to the conformation optimized for its phosphate-modified analog. The results of calculations revealed that conformational ‘strain’ of phosphate-modified nucleotides depends not only on the nature of the substituent but also on its position. The respective effect had the largest magnitude when the substitution was made between two terminal phosphorus atoms. Given that the ‘strain energy’ characterizes the geometrical aspects of the interaction of nucleotide molecules with receptors and enzymes, an attempt was made to correlate it with the corresponding biological activities. Such correlation was significant in the case of highly specific binding sites for universal ligands like ATP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1