J. León-Becerra, O. González-Estrada, W. Pinto-Hernández
{"title":"增材制造复合材料零件的力学特性","authors":"J. León-Becerra, O. González-Estrada, W. Pinto-Hernández","doi":"10.22463/0122820X.2189","DOIUrl":null,"url":null,"abstract":"espanolLa manufactura aditiva es un metodo de fabricacion reciente en el que la pieza se produce capa por capa a partir de un modelo CAD 3D. En este trabajo, presentamos la caracterizacion mecanica del Fusion Deposition Modeling (FDM) aplicada a partes compuestas hechas por una matriz de nailon con dos tipos de refuerzos de fibra: fibra de carbono o fibra de vidrio. A partir de la microestructura obtenida, se realiza una division de la parte compuesta en regiones, y se encuentran matrices de rigidez individuales utilizando un modelo isotropico elastico lineal, para el caso de relleno de matriz solida, o un modelo elastico ortotropico lineal basado en resultados micromecanicos. Luego, se emplea un metodo de rigidez promedio de volumen para realizar la caracterizacion de la parte completa. Los resultados teoricos se comparan con los datos experimentales, mostrando una buena concordancia en ambos casos. Esta investigacion permite la prediccion del comportamiento estructural de las piezas compuestas de fabricacion aditiva. EnglishAdditive Manufacturing is a novel manufacturing method in which the part is produced layer by layer from a 3D CAD model. In this work, we present the mechanical characterization of Fusion Deposition Modeling (FDM). Composite parts made by a nylon matrix with two kinds of fiber reinforcements: carbon fiber or fiberglass. From the obtained microstructure, we perform a division of the composite part in regions, and individual stiffness matrices are encountered by either using a linear elastic isotropic model, for the case of solid matrix filling, or an orthotropic linear elastic model based on micromechanical results. Then, a volume average stiffness method is employed to perform the characterization of the whole part. The theoretical results are compared with the experimental data, showing good agreement for both cases. This research allows the prediction of the structural behavior of additive manufacturing 2composite parts.","PeriodicalId":20991,"journal":{"name":"Respuestas","volume":"1 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanical characterization of additive manufacturing composite parts\",\"authors\":\"J. León-Becerra, O. González-Estrada, W. Pinto-Hernández\",\"doi\":\"10.22463/0122820X.2189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"espanolLa manufactura aditiva es un metodo de fabricacion reciente en el que la pieza se produce capa por capa a partir de un modelo CAD 3D. En este trabajo, presentamos la caracterizacion mecanica del Fusion Deposition Modeling (FDM) aplicada a partes compuestas hechas por una matriz de nailon con dos tipos de refuerzos de fibra: fibra de carbono o fibra de vidrio. A partir de la microestructura obtenida, se realiza una division de la parte compuesta en regiones, y se encuentran matrices de rigidez individuales utilizando un modelo isotropico elastico lineal, para el caso de relleno de matriz solida, o un modelo elastico ortotropico lineal basado en resultados micromecanicos. Luego, se emplea un metodo de rigidez promedio de volumen para realizar la caracterizacion de la parte completa. Los resultados teoricos se comparan con los datos experimentales, mostrando una buena concordancia en ambos casos. Esta investigacion permite la prediccion del comportamiento estructural de las piezas compuestas de fabricacion aditiva. EnglishAdditive Manufacturing is a novel manufacturing method in which the part is produced layer by layer from a 3D CAD model. In this work, we present the mechanical characterization of Fusion Deposition Modeling (FDM). Composite parts made by a nylon matrix with two kinds of fiber reinforcements: carbon fiber or fiberglass. From the obtained microstructure, we perform a division of the composite part in regions, and individual stiffness matrices are encountered by either using a linear elastic isotropic model, for the case of solid matrix filling, or an orthotropic linear elastic model based on micromechanical results. Then, a volume average stiffness method is employed to perform the characterization of the whole part. The theoretical results are compared with the experimental data, showing good agreement for both cases. This research allows the prediction of the structural behavior of additive manufacturing 2composite parts.\",\"PeriodicalId\":20991,\"journal\":{\"name\":\"Respuestas\",\"volume\":\"1 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respuestas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22463/0122820X.2189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respuestas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22463/0122820X.2189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
西班牙增材制造是一种最近的制造方法,它使用3D CAD模型一层一层地生产零件。在这项工作中,我们提出了熔化沉积建模(FDM)的力学特性,应用于由尼龙基体与两种类型的纤维增强:碳纤维或玻璃纤维制成的复合部件。从获得的微观结构,进行一场分裂地区的组成部分,并使用一个模型处于个体刚度矩阵isotropico线性elastico塞,对于solida矩阵,或一个模型elastico ortotropico基于结果micromecanicos线性。然后,采用平均体积刚度法对整个部件进行表征。将理论结果与实验数据进行了比较,结果吻合较好。这项研究允许预测增材制造复合材料的结构行为。增材制造是一种新的制造方法,零件从3D CAD模型一层一层地生产。在这项工作中,我们提出了熔化沉积模型(FDM)的力学特征。由尼龙基体制成的复合部件,有两种纤维增强:碳纤维或玻璃纤维。从微观结构的角度,我们将复合材料部分划分为区域和单个刚度矩阵,要么使用线性弹性各向同性模型来填充固体矩阵,要么使用基于微观力学结果的正向异性线性弹性模型。= =地理根据美国人口普查,这个县的总面积是,其中土地和(1.1%)水。将理论结果与实验数据进行比较,两种情况均显示出良好的一致性。This research allows the prediction of the结构上不可behavior of additive manufacturing 2composite parts。
Mechanical characterization of additive manufacturing composite parts
espanolLa manufactura aditiva es un metodo de fabricacion reciente en el que la pieza se produce capa por capa a partir de un modelo CAD 3D. En este trabajo, presentamos la caracterizacion mecanica del Fusion Deposition Modeling (FDM) aplicada a partes compuestas hechas por una matriz de nailon con dos tipos de refuerzos de fibra: fibra de carbono o fibra de vidrio. A partir de la microestructura obtenida, se realiza una division de la parte compuesta en regiones, y se encuentran matrices de rigidez individuales utilizando un modelo isotropico elastico lineal, para el caso de relleno de matriz solida, o un modelo elastico ortotropico lineal basado en resultados micromecanicos. Luego, se emplea un metodo de rigidez promedio de volumen para realizar la caracterizacion de la parte completa. Los resultados teoricos se comparan con los datos experimentales, mostrando una buena concordancia en ambos casos. Esta investigacion permite la prediccion del comportamiento estructural de las piezas compuestas de fabricacion aditiva. EnglishAdditive Manufacturing is a novel manufacturing method in which the part is produced layer by layer from a 3D CAD model. In this work, we present the mechanical characterization of Fusion Deposition Modeling (FDM). Composite parts made by a nylon matrix with two kinds of fiber reinforcements: carbon fiber or fiberglass. From the obtained microstructure, we perform a division of the composite part in regions, and individual stiffness matrices are encountered by either using a linear elastic isotropic model, for the case of solid matrix filling, or an orthotropic linear elastic model based on micromechanical results. Then, a volume average stiffness method is employed to perform the characterization of the whole part. The theoretical results are compared with the experimental data, showing good agreement for both cases. This research allows the prediction of the structural behavior of additive manufacturing 2composite parts.