{"title":"工艺和温度补偿CMOS环形振荡器的设计与实现","authors":"S. Panyai, A. Thanachayanont","doi":"10.1109/ECTICON.2012.6254225","DOIUrl":null,"url":null,"abstract":"This paper describes the design and realization of a process and temperature compensated CMOS ring oscillator. The proposed circuit employs a current-starved ring oscillator with a compensated bias circuit, which generates an adaptive control voltage to maintain a fixed oscillation frequency against temperature and process variations. Simulation results using process parameters from a 0.18-μm CMOS technology and 1.8-V power supply voltage showed that the worst-case frequency variation of 4.49% and 2.29% could be obtained at the oscillation frequencies of 100 MHz and 150 MHz, respectively, over the temperature range of - 40°C to 125°C. The overall circuit consumes 437μW at 100MHz and 537μW at 150MHz.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Design and realization of a process and temperature compensated CMOS ring oscillator\",\"authors\":\"S. Panyai, A. Thanachayanont\",\"doi\":\"10.1109/ECTICON.2012.6254225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design and realization of a process and temperature compensated CMOS ring oscillator. The proposed circuit employs a current-starved ring oscillator with a compensated bias circuit, which generates an adaptive control voltage to maintain a fixed oscillation frequency against temperature and process variations. Simulation results using process parameters from a 0.18-μm CMOS technology and 1.8-V power supply voltage showed that the worst-case frequency variation of 4.49% and 2.29% could be obtained at the oscillation frequencies of 100 MHz and 150 MHz, respectively, over the temperature range of - 40°C to 125°C. The overall circuit consumes 437μW at 100MHz and 537μW at 150MHz.\",\"PeriodicalId\":6319,\"journal\":{\"name\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"4 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2012.6254225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and realization of a process and temperature compensated CMOS ring oscillator
This paper describes the design and realization of a process and temperature compensated CMOS ring oscillator. The proposed circuit employs a current-starved ring oscillator with a compensated bias circuit, which generates an adaptive control voltage to maintain a fixed oscillation frequency against temperature and process variations. Simulation results using process parameters from a 0.18-μm CMOS technology and 1.8-V power supply voltage showed that the worst-case frequency variation of 4.49% and 2.29% could be obtained at the oscillation frequencies of 100 MHz and 150 MHz, respectively, over the temperature range of - 40°C to 125°C. The overall circuit consumes 437μW at 100MHz and 537μW at 150MHz.