M. Szántó, S. Kobál, L. Vajta, Viktor Győző Horváth, J. Lógó, Á. Barsi
{"title":"在模拟器环境中使用安装在挡风玻璃上的摄像机的单目图像馈送构建地图","authors":"M. Szántó, S. Kobál, L. Vajta, Viktor Győző Horváth, J. Lógó, Á. Barsi","doi":"10.3311/ppci.21500","DOIUrl":null,"url":null,"abstract":"3-dimensional, accurate, and up-to-date maps are essential for vehicles with autonomous capabilities, whose functionality is made possible by machine learning-based algorithms. Since these solutions require a tremendous amount of data for parameter optimization, simulation-to-reality (Sim2Real) methods have been proven immensely useful for training data generation. For creating realistic models to be used for synthetic data generation, crowdsourcing techniques present a resource-efficient alternative. In this paper, we show that using the Carla simulation environment, a crowdsourcing model can be created that mimics a multi-agent data gathering and processing pipeline. We developed a solution that yields dense point clouds based on monocular images and location information gathered by individual data acquisition vehicles. Our method provides scene reconstructions using the robust Structure-from-Motion (SfM) solution of Colmap. Moreover, we introduce a solution for synthesizing dense ground truth point clouds originating from the Carla simulator using a simulated data acquisition pipeline. We compare the results of the Colmap reconstruction with the reference point cloud after aligning them using the iterative closest point algorithm. Our results show that a precise point cloud reconstruction was feasible with this crowdsourcing-based approach, with 54\\% of the reconstructed points having an error under 0.05 m, and a weighted root mean square error of 0.0449 m for the entire point cloud.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Maps Using Monocular Image-feeds from Windshield-mounted Cameras in a Simulator Environment\",\"authors\":\"M. Szántó, S. Kobál, L. Vajta, Viktor Győző Horváth, J. Lógó, Á. Barsi\",\"doi\":\"10.3311/ppci.21500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3-dimensional, accurate, and up-to-date maps are essential for vehicles with autonomous capabilities, whose functionality is made possible by machine learning-based algorithms. Since these solutions require a tremendous amount of data for parameter optimization, simulation-to-reality (Sim2Real) methods have been proven immensely useful for training data generation. For creating realistic models to be used for synthetic data generation, crowdsourcing techniques present a resource-efficient alternative. In this paper, we show that using the Carla simulation environment, a crowdsourcing model can be created that mimics a multi-agent data gathering and processing pipeline. We developed a solution that yields dense point clouds based on monocular images and location information gathered by individual data acquisition vehicles. Our method provides scene reconstructions using the robust Structure-from-Motion (SfM) solution of Colmap. Moreover, we introduce a solution for synthesizing dense ground truth point clouds originating from the Carla simulator using a simulated data acquisition pipeline. We compare the results of the Colmap reconstruction with the reference point cloud after aligning them using the iterative closest point algorithm. Our results show that a precise point cloud reconstruction was feasible with this crowdsourcing-based approach, with 54\\\\% of the reconstructed points having an error under 0.05 m, and a weighted root mean square error of 0.0449 m for the entire point cloud.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.21500\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Building Maps Using Monocular Image-feeds from Windshield-mounted Cameras in a Simulator Environment
3-dimensional, accurate, and up-to-date maps are essential for vehicles with autonomous capabilities, whose functionality is made possible by machine learning-based algorithms. Since these solutions require a tremendous amount of data for parameter optimization, simulation-to-reality (Sim2Real) methods have been proven immensely useful for training data generation. For creating realistic models to be used for synthetic data generation, crowdsourcing techniques present a resource-efficient alternative. In this paper, we show that using the Carla simulation environment, a crowdsourcing model can be created that mimics a multi-agent data gathering and processing pipeline. We developed a solution that yields dense point clouds based on monocular images and location information gathered by individual data acquisition vehicles. Our method provides scene reconstructions using the robust Structure-from-Motion (SfM) solution of Colmap. Moreover, we introduce a solution for synthesizing dense ground truth point clouds originating from the Carla simulator using a simulated data acquisition pipeline. We compare the results of the Colmap reconstruction with the reference point cloud after aligning them using the iterative closest point algorithm. Our results show that a precise point cloud reconstruction was feasible with this crowdsourcing-based approach, with 54\% of the reconstructed points having an error under 0.05 m, and a weighted root mean square error of 0.0449 m for the entire point cloud.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.