{"title":"集成物联网监测框架的井筒多传感器ADEP设计与开发","authors":"S. K, L. J., J. M, Balamurugan Easwaran","doi":"10.53759/7669/jmc202303014","DOIUrl":null,"url":null,"abstract":"Typically, about 51% of the groundwater satisfies the drinking water worldwide and is regarded as the major source for the purpose of irrigation. Moreover, the monitoring and assessment of groundwater over bore wells is essential to identify the effect of seasonal changes, precipitations, and the extraction of water. Hence, there is a need to design a depth sensor probe for bore wells so as to analyze/monitor the quality of underground water thereby estimating any geophysical variations like landslides/earthquakes. Once the depth sensor probe is designed, the data is collected over wireless sensor network (WSN) medium and is stored in cloud for further monitoring and analyzing purposes. WSN is the major promising technologies that offer the real-time monitoring opportunities for geographical areas. The wireless medium in turn senses and gathers data like rainfall, movement, vibration, moisture, hydrological and geological aspects of soil that helps in better understanding of landslide or earthquake disasters. In this paper, the design and development of geophysical sensor probe for the deep bore well so as to monitor and collect the data like geological and hydrological conditions. The data collected is then transmitted by wireless network to analyze the geological changes which can cause natural disaster and water quality assessment.","PeriodicalId":91709,"journal":{"name":"International journal of machine learning and computing","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Development of Multi-Sensor ADEP for Bore Wells Integrated with IoT Enabled Monitoring Framework\",\"authors\":\"S. K, L. J., J. M, Balamurugan Easwaran\",\"doi\":\"10.53759/7669/jmc202303014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typically, about 51% of the groundwater satisfies the drinking water worldwide and is regarded as the major source for the purpose of irrigation. Moreover, the monitoring and assessment of groundwater over bore wells is essential to identify the effect of seasonal changes, precipitations, and the extraction of water. Hence, there is a need to design a depth sensor probe for bore wells so as to analyze/monitor the quality of underground water thereby estimating any geophysical variations like landslides/earthquakes. Once the depth sensor probe is designed, the data is collected over wireless sensor network (WSN) medium and is stored in cloud for further monitoring and analyzing purposes. WSN is the major promising technologies that offer the real-time monitoring opportunities for geographical areas. The wireless medium in turn senses and gathers data like rainfall, movement, vibration, moisture, hydrological and geological aspects of soil that helps in better understanding of landslide or earthquake disasters. In this paper, the design and development of geophysical sensor probe for the deep bore well so as to monitor and collect the data like geological and hydrological conditions. The data collected is then transmitted by wireless network to analyze the geological changes which can cause natural disaster and water quality assessment.\",\"PeriodicalId\":91709,\"journal\":{\"name\":\"International journal of machine learning and computing\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of machine learning and computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53759/7669/jmc202303014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of machine learning and computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202303014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Development of Multi-Sensor ADEP for Bore Wells Integrated with IoT Enabled Monitoring Framework
Typically, about 51% of the groundwater satisfies the drinking water worldwide and is regarded as the major source for the purpose of irrigation. Moreover, the monitoring and assessment of groundwater over bore wells is essential to identify the effect of seasonal changes, precipitations, and the extraction of water. Hence, there is a need to design a depth sensor probe for bore wells so as to analyze/monitor the quality of underground water thereby estimating any geophysical variations like landslides/earthquakes. Once the depth sensor probe is designed, the data is collected over wireless sensor network (WSN) medium and is stored in cloud for further monitoring and analyzing purposes. WSN is the major promising technologies that offer the real-time monitoring opportunities for geographical areas. The wireless medium in turn senses and gathers data like rainfall, movement, vibration, moisture, hydrological and geological aspects of soil that helps in better understanding of landslide or earthquake disasters. In this paper, the design and development of geophysical sensor probe for the deep bore well so as to monitor and collect the data like geological and hydrological conditions. The data collected is then transmitted by wireless network to analyze the geological changes which can cause natural disaster and water quality assessment.