{"title":"用于毫米波5G移动通信的FR4 PCB网格阵列天线","authors":"Zihao Chen, Yue Ping Zhang","doi":"10.1109/IMWS-BIO.2013.6756214","DOIUrl":null,"url":null,"abstract":"Future broadband mobile communication networks such as 5G and beyond will most likely use millimeter-wave frequencies. There is, however, little knowledge about millimeter-wave antenna design for cellular mobile devices. This paper reports a microstrip grid array antenna on an FR4 substrate in a standard PCB technology. It is shown that the microstrip grid array antenna covers a footprint of 15×15 mm2, radiates a fixed beam in the boresight direction, and achieves the 10-dB impedance bandwidth of 7.16 GHz from 23.86 to 31.02 GHz and the 3-dB gain bandwidth of 4.79 GHz from 27.54 to 32.33 GHz with the maximal realized gain of 12.66 dBi at 29.2 GHz.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"30 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"FR4 PCB grid array antenna for millimeter-wave 5G mobile communications\",\"authors\":\"Zihao Chen, Yue Ping Zhang\",\"doi\":\"10.1109/IMWS-BIO.2013.6756214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future broadband mobile communication networks such as 5G and beyond will most likely use millimeter-wave frequencies. There is, however, little knowledge about millimeter-wave antenna design for cellular mobile devices. This paper reports a microstrip grid array antenna on an FR4 substrate in a standard PCB technology. It is shown that the microstrip grid array antenna covers a footprint of 15×15 mm2, radiates a fixed beam in the boresight direction, and achieves the 10-dB impedance bandwidth of 7.16 GHz from 23.86 to 31.02 GHz and the 3-dB gain bandwidth of 4.79 GHz from 27.54 to 32.33 GHz with the maximal realized gain of 12.66 dBi at 29.2 GHz.\",\"PeriodicalId\":6321,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"volume\":\"30 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-BIO.2013.6756214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FR4 PCB grid array antenna for millimeter-wave 5G mobile communications
Future broadband mobile communication networks such as 5G and beyond will most likely use millimeter-wave frequencies. There is, however, little knowledge about millimeter-wave antenna design for cellular mobile devices. This paper reports a microstrip grid array antenna on an FR4 substrate in a standard PCB technology. It is shown that the microstrip grid array antenna covers a footprint of 15×15 mm2, radiates a fixed beam in the boresight direction, and achieves the 10-dB impedance bandwidth of 7.16 GHz from 23.86 to 31.02 GHz and the 3-dB gain bandwidth of 4.79 GHz from 27.54 to 32.33 GHz with the maximal realized gain of 12.66 dBi at 29.2 GHz.