自适应有理插值:类Arnoldi和lanczos方程

Michalis Frangos, I. Jaimoukha
{"title":"自适应有理插值:类Arnoldi和lanczos方程","authors":"Michalis Frangos, I. Jaimoukha","doi":"10.3166/ejc.14.342354","DOIUrl":null,"url":null,"abstract":"The Arnoldi and Lanczos algorithms, which belong to the class of Krylov subspace methods, are increasingly used for model reduction of large-scale systems. The standard versions of the algorithms tend to create reduced order models that poorly approximate low frequency dynamics. Rational Arnoldi and Lanczos algorithms produce reduced models that approximate dynamics at various frequencies. This paper tackles the issue of developing simple Arnoldi and Lanczos equations for the rational case. This allows a simple error analysis to be carried out for both algorithms and permits the development of computationally efficient model reduction algorithms, where the frequencies at which the dynamics are to be matched can be updated adaptively.","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Adaptive Rational Interpolation: Arnoldi and Lanczos-like Equations\",\"authors\":\"Michalis Frangos, I. Jaimoukha\",\"doi\":\"10.3166/ejc.14.342354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arnoldi and Lanczos algorithms, which belong to the class of Krylov subspace methods, are increasingly used for model reduction of large-scale systems. The standard versions of the algorithms tend to create reduced order models that poorly approximate low frequency dynamics. Rational Arnoldi and Lanczos algorithms produce reduced models that approximate dynamics at various frequencies. This paper tackles the issue of developing simple Arnoldi and Lanczos equations for the rational case. This allows a simple error analysis to be carried out for both algorithms and permits the development of computationally efficient model reduction algorithms, where the frequencies at which the dynamics are to be matched can be updated adaptively.\",\"PeriodicalId\":11813,\"journal\":{\"name\":\"Eur. J. Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eur. J. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3166/ejc.14.342354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/ejc.14.342354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

属于Krylov子空间方法的Arnoldi和Lanczos算法越来越多地用于大规模系统的模型约简。这些算法的标准版本倾向于创建低阶模型,这些模型很难近似低频动态。Rational Arnoldi和Lanczos算法产生在不同频率下近似动态的简化模型。本文讨论了在理性情况下发展简单的Arnoldi和Lanczos方程的问题。这允许对两种算法进行简单的误差分析,并允许开发计算效率高的模型缩减算法,其中动态匹配的频率可以自适应地更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Rational Interpolation: Arnoldi and Lanczos-like Equations
The Arnoldi and Lanczos algorithms, which belong to the class of Krylov subspace methods, are increasingly used for model reduction of large-scale systems. The standard versions of the algorithms tend to create reduced order models that poorly approximate low frequency dynamics. Rational Arnoldi and Lanczos algorithms produce reduced models that approximate dynamics at various frequencies. This paper tackles the issue of developing simple Arnoldi and Lanczos equations for the rational case. This allows a simple error analysis to be carried out for both algorithms and permits the development of computationally efficient model reduction algorithms, where the frequencies at which the dynamics are to be matched can be updated adaptively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear model predictive control for thermal balance in solar trough plants Model reference adaptive control with adjustable gain for piezoelectric actuator Robust non-fragile boundary control for non-linear parabolic PDE systems with semi-Markov switching and input quantization Stabilization of rational nonlinear discrete-time systems by state feedback and static output feedback Experimental study on a novel simultaneous control and identification of a 3-DOF delta robot using model reference adaptive control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1