{"title":"光伏材料ZnAl2Se4结构、光电和热力学性质的从头算研究","authors":"N. Erum, Javed Ahmad, M. Iqbal","doi":"10.1139/cjp-2023-0077","DOIUrl":null,"url":null,"abstract":"In this manuscript, the structural, opto-electronic, and thermodynamic properties of ZnAl2Se4 chalcogenide compounds were studied in detail using the full potential linearized augmented plane wave method. The exchange and correlation potentials used in density functional theory were calculated using local density approximation, the generalized gradient approximation (GGA) method, and the modified Becke–Johnson (mBJ) potential using Wien2k code. The obtained results were compared with each other as well as with available experimental data. At ambient conditions, ZnAl2Se4 is a direct wide bandgap (Г–Г) semiconductor with a bandgap of 2.1 and 3.3 eV with GGA and mBJ potentials, respectively. Density of states (DOS; total DOS and Partial Density Of States (PDOS)) and electron density contour plots were in similar accordance with bandgap, showing semiconductive behavior and covalent bonding nature. The optical properties like the real and imaginary parts of the dielectric constant, the energy loss function L( ω), and the conductivity σ( ω) were calculated. Optical aspects show interaction among phonon and electron in terms of long-range and short-range forces. The studied compound is very useful for various linear–nonlinear optical devices, so this compound is very valuable for several linear–nonlinear optical devices. So this manuscript represents a comprehensive approach for calculating the complete set of useful properties of the ZnAl2Se4 compound, which can provide support for understanding various device phenomena such as electrochemical sensing, photovoltaics, and nonvolatile electronic memories.","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":"os-27 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab-initio investigation of structural, opto-electronic, and thermodynamic properties of ZnAl2Se4 for photovoltaic applications\",\"authors\":\"N. Erum, Javed Ahmad, M. Iqbal\",\"doi\":\"10.1139/cjp-2023-0077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, the structural, opto-electronic, and thermodynamic properties of ZnAl2Se4 chalcogenide compounds were studied in detail using the full potential linearized augmented plane wave method. The exchange and correlation potentials used in density functional theory were calculated using local density approximation, the generalized gradient approximation (GGA) method, and the modified Becke–Johnson (mBJ) potential using Wien2k code. The obtained results were compared with each other as well as with available experimental data. At ambient conditions, ZnAl2Se4 is a direct wide bandgap (Г–Г) semiconductor with a bandgap of 2.1 and 3.3 eV with GGA and mBJ potentials, respectively. Density of states (DOS; total DOS and Partial Density Of States (PDOS)) and electron density contour plots were in similar accordance with bandgap, showing semiconductive behavior and covalent bonding nature. The optical properties like the real and imaginary parts of the dielectric constant, the energy loss function L( ω), and the conductivity σ( ω) were calculated. Optical aspects show interaction among phonon and electron in terms of long-range and short-range forces. The studied compound is very useful for various linear–nonlinear optical devices, so this compound is very valuable for several linear–nonlinear optical devices. So this manuscript represents a comprehensive approach for calculating the complete set of useful properties of the ZnAl2Se4 compound, which can provide support for understanding various device phenomena such as electrochemical sensing, photovoltaics, and nonvolatile electronic memories.\",\"PeriodicalId\":9413,\"journal\":{\"name\":\"Canadian Journal of Physics\",\"volume\":\"os-27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1139/cjp-2023-0077\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0077","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Ab-initio investigation of structural, opto-electronic, and thermodynamic properties of ZnAl2Se4 for photovoltaic applications
In this manuscript, the structural, opto-electronic, and thermodynamic properties of ZnAl2Se4 chalcogenide compounds were studied in detail using the full potential linearized augmented plane wave method. The exchange and correlation potentials used in density functional theory were calculated using local density approximation, the generalized gradient approximation (GGA) method, and the modified Becke–Johnson (mBJ) potential using Wien2k code. The obtained results were compared with each other as well as with available experimental data. At ambient conditions, ZnAl2Se4 is a direct wide bandgap (Г–Г) semiconductor with a bandgap of 2.1 and 3.3 eV with GGA and mBJ potentials, respectively. Density of states (DOS; total DOS and Partial Density Of States (PDOS)) and electron density contour plots were in similar accordance with bandgap, showing semiconductive behavior and covalent bonding nature. The optical properties like the real and imaginary parts of the dielectric constant, the energy loss function L( ω), and the conductivity σ( ω) were calculated. Optical aspects show interaction among phonon and electron in terms of long-range and short-range forces. The studied compound is very useful for various linear–nonlinear optical devices, so this compound is very valuable for several linear–nonlinear optical devices. So this manuscript represents a comprehensive approach for calculating the complete set of useful properties of the ZnAl2Se4 compound, which can provide support for understanding various device phenomena such as electrochemical sensing, photovoltaics, and nonvolatile electronic memories.
期刊介绍:
The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.