从环保的角度看超声波技术在提高采收率中的应用

Hesam Arabzadeh, M. Amani
{"title":"从环保的角度看超声波技术在提高采收率中的应用","authors":"Hesam Arabzadeh, M. Amani","doi":"10.4172/2157-7463.1000323","DOIUrl":null,"url":null,"abstract":"It is proven by recent studies that sonication has a positive influence over the oil flow within the porous media. Accordingly, the researchers in this paper evaluated the influence of sonication over the oil recovery by means of free fall gravity drainage. Furthermore, the influence of sonication on the oil permeability was assessed in three samples that had different bead size in average. By use of the Hagroot backward method and Matlab simulation, the optimal petrophysical situation for sonication was determined. The authors concluded that sonication positively affects the oil recovery for the non-asphaltenic samples, while it has a reverse effect on the asphaltenic samples because of increasing the viscosity in long-term. Furthermore, it was witnessed that gravity drainage was heightened by increase of beads’ size in the non-asphaltenic sample. Accordingly, this mechanism can be useful in oil recovery by means of gravity drainage, specifically in fracture reservoirs.","PeriodicalId":16699,"journal":{"name":"Journal of Petroleum & Environmental Biotechnology","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of a Novel Ultrasonic Technology to Improve Oil Recovery with an Environmental Viewpoint\",\"authors\":\"Hesam Arabzadeh, M. Amani\",\"doi\":\"10.4172/2157-7463.1000323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proven by recent studies that sonication has a positive influence over the oil flow within the porous media. Accordingly, the researchers in this paper evaluated the influence of sonication over the oil recovery by means of free fall gravity drainage. Furthermore, the influence of sonication on the oil permeability was assessed in three samples that had different bead size in average. By use of the Hagroot backward method and Matlab simulation, the optimal petrophysical situation for sonication was determined. The authors concluded that sonication positively affects the oil recovery for the non-asphaltenic samples, while it has a reverse effect on the asphaltenic samples because of increasing the viscosity in long-term. Furthermore, it was witnessed that gravity drainage was heightened by increase of beads’ size in the non-asphaltenic sample. Accordingly, this mechanism can be useful in oil recovery by means of gravity drainage, specifically in fracture reservoirs.\",\"PeriodicalId\":16699,\"journal\":{\"name\":\"Journal of Petroleum & Environmental Biotechnology\",\"volume\":\"30 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum & Environmental Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7463.1000323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum & Environmental Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7463.1000323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来的研究证明,超声对多孔介质内的油流有积极的影响。因此,本文采用自由落体重力泄油的方法,评价了超声对采收率的影响。此外,在三个平均粒径不同的样品中,评估了超声对油渗透率的影响。利用Hagroot反求法和Matlab仿真,确定了声波探测的最佳岩石物性条件。结果表明,超声波对非沥青质样品的采收率有积极的影响,而对沥青质样品的采收率则有相反的影响,因为从长期来看,超声波会增加沥青质样品的粘度。在非沥青质样品中,随着颗粒尺寸的增大,重力疏水性增强。因此,该机制可用于重力排水采油,特别是裂缝油藏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of a Novel Ultrasonic Technology to Improve Oil Recovery with an Environmental Viewpoint
It is proven by recent studies that sonication has a positive influence over the oil flow within the porous media. Accordingly, the researchers in this paper evaluated the influence of sonication over the oil recovery by means of free fall gravity drainage. Furthermore, the influence of sonication on the oil permeability was assessed in three samples that had different bead size in average. By use of the Hagroot backward method and Matlab simulation, the optimal petrophysical situation for sonication was determined. The authors concluded that sonication positively affects the oil recovery for the non-asphaltenic samples, while it has a reverse effect on the asphaltenic samples because of increasing the viscosity in long-term. Furthermore, it was witnessed that gravity drainage was heightened by increase of beads’ size in the non-asphaltenic sample. Accordingly, this mechanism can be useful in oil recovery by means of gravity drainage, specifically in fracture reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioremedation and its Uses Geology and its Understanding Oil and Gas Pipeline Types Machine Learning Methods for Oil Recovery Prediction Petrophysics and Petrophysicist
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1