学习时间序列shapelets

Josif Grabocka, Nicolas Schilling, Martin Wistuba, L. Schmidt-Thieme
{"title":"学习时间序列shapelets","authors":"Josif Grabocka, Nicolas Schilling, Martin Wistuba, L. Schmidt-Thieme","doi":"10.1145/2623330.2623613","DOIUrl":null,"url":null,"abstract":"Shapelets are discriminative sub-sequences of time series that best predict the target variable. For this reason, shapelet discovery has recently attracted considerable interest within the time-series research community. Currently shapelets are found by evaluating the prediction qualities of numerous candidates extracted from the series segments. In contrast to the state-of-the-art, this paper proposes a novel perspective in terms of learning shapelets. A new mathematical formalization of the task via a classification objective function is proposed and a tailored stochastic gradient learning algorithm is applied. The proposed method enables learning near-to-optimal shapelets directly without the need to try out lots of candidates. Furthermore, our method can learn true top-K shapelets by capturing their interaction. Extensive experimentation demonstrates statistically significant improvement in terms of wins and ranks against 13 baselines over 28 time-series datasets.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"377","resultStr":"{\"title\":\"Learning time-series shapelets\",\"authors\":\"Josif Grabocka, Nicolas Schilling, Martin Wistuba, L. Schmidt-Thieme\",\"doi\":\"10.1145/2623330.2623613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shapelets are discriminative sub-sequences of time series that best predict the target variable. For this reason, shapelet discovery has recently attracted considerable interest within the time-series research community. Currently shapelets are found by evaluating the prediction qualities of numerous candidates extracted from the series segments. In contrast to the state-of-the-art, this paper proposes a novel perspective in terms of learning shapelets. A new mathematical formalization of the task via a classification objective function is proposed and a tailored stochastic gradient learning algorithm is applied. The proposed method enables learning near-to-optimal shapelets directly without the need to try out lots of candidates. Furthermore, our method can learn true top-K shapelets by capturing their interaction. Extensive experimentation demonstrates statistically significant improvement in terms of wins and ranks against 13 baselines over 28 time-series datasets.\",\"PeriodicalId\":20536,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"377\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2623330.2623613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 377

摘要

Shapelets是时间序列的判别子序列,最能预测目标变量。由于这个原因,shapelet的发现最近在时间序列研究界引起了相当大的兴趣。目前,shapelets是通过评估从序列片段中提取的众多候选样本的预测质量来发现的。与目前的研究相比,本文提出了一种新的视角来学习小颗粒。提出了一种新的基于分类目标函数的任务数学形式化方法,并应用了一种定制的随机梯度学习算法。提出的方法可以直接学习接近最优的shapelets,而不需要尝试大量的候选者。此外,我们的方法可以通过捕获它们的相互作用来学习真正的top-K shapelets。广泛的实验表明,在28个时间序列数据集的13个基线上,在胜利和排名方面有统计学上的显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning time-series shapelets
Shapelets are discriminative sub-sequences of time series that best predict the target variable. For this reason, shapelet discovery has recently attracted considerable interest within the time-series research community. Currently shapelets are found by evaluating the prediction qualities of numerous candidates extracted from the series segments. In contrast to the state-of-the-art, this paper proposes a novel perspective in terms of learning shapelets. A new mathematical formalization of the task via a classification objective function is proposed and a tailored stochastic gradient learning algorithm is applied. The proposed method enables learning near-to-optimal shapelets directly without the need to try out lots of candidates. Furthermore, our method can learn true top-K shapelets by capturing their interaction. Extensive experimentation demonstrates statistically significant improvement in terms of wins and ranks against 13 baselines over 28 time-series datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1