Fengkai Zhang, B. Liu, Jing Wang, Li Yao, Nie Lichao, Wang Zhengfang, Chongmin Zhang
{"title":"基于积分预处理的地面共偏移GPR数据二维时域全波形反演","authors":"Fengkai Zhang, B. Liu, Jing Wang, Li Yao, Nie Lichao, Wang Zhengfang, Chongmin Zhang","doi":"10.32389/jeeg19-052","DOIUrl":null,"url":null,"abstract":"Full waveform inversion (FWI) is an advanced inversion technique for ground penetrating radar (GPR), which could provide quantitative, high-resolution subsurface imaging. FWI has been used widely to process crosshole and on-ground multi-offset GPR data, but its application to on-ground common-offset GPR data is more difficult and being developed. This is mainly because that on-ground common-offset GPR has much less coverage of the subsurface and mainly includes reflective information. The application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Here, we demonstrate a means of achieving this successfully by preprocessing the observed data and the residual fields with an integral algorithm, which could produce a more reasonable gradient and therefore lead to better inversion results. Several cases verify the effectiveness of this method. We achieve the simultaneous inversion of relative permittivity and conductivity for on-ground common-offset GPR, and discuss the trade-off between permittivity and conductivity in details. According to the inversion results of test models, it seems that the inversion result of relative permittivity is more credible in most cases.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"12 1","pages":"369-380"},"PeriodicalIF":1.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-dimensional Time-domain Full Waveform Inversion of On-ground Common-offset GPR Data Based on Integral Preprocessing\",\"authors\":\"Fengkai Zhang, B. Liu, Jing Wang, Li Yao, Nie Lichao, Wang Zhengfang, Chongmin Zhang\",\"doi\":\"10.32389/jeeg19-052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full waveform inversion (FWI) is an advanced inversion technique for ground penetrating radar (GPR), which could provide quantitative, high-resolution subsurface imaging. FWI has been used widely to process crosshole and on-ground multi-offset GPR data, but its application to on-ground common-offset GPR data is more difficult and being developed. This is mainly because that on-ground common-offset GPR has much less coverage of the subsurface and mainly includes reflective information. The application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Here, we demonstrate a means of achieving this successfully by preprocessing the observed data and the residual fields with an integral algorithm, which could produce a more reasonable gradient and therefore lead to better inversion results. Several cases verify the effectiveness of this method. We achieve the simultaneous inversion of relative permittivity and conductivity for on-ground common-offset GPR, and discuss the trade-off between permittivity and conductivity in details. According to the inversion results of test models, it seems that the inversion result of relative permittivity is more credible in most cases.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"12 1\",\"pages\":\"369-380\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.32389/jeeg19-052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg19-052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Two-dimensional Time-domain Full Waveform Inversion of On-ground Common-offset GPR Data Based on Integral Preprocessing
Full waveform inversion (FWI) is an advanced inversion technique for ground penetrating radar (GPR), which could provide quantitative, high-resolution subsurface imaging. FWI has been used widely to process crosshole and on-ground multi-offset GPR data, but its application to on-ground common-offset GPR data is more difficult and being developed. This is mainly because that on-ground common-offset GPR has much less coverage of the subsurface and mainly includes reflective information. The application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Here, we demonstrate a means of achieving this successfully by preprocessing the observed data and the residual fields with an integral algorithm, which could produce a more reasonable gradient and therefore lead to better inversion results. Several cases verify the effectiveness of this method. We achieve the simultaneous inversion of relative permittivity and conductivity for on-ground common-offset GPR, and discuss the trade-off between permittivity and conductivity in details. According to the inversion results of test models, it seems that the inversion result of relative permittivity is more credible in most cases.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.